
$A B S=1.91 .35$
Tohus

$$
8_{3-5}
$$

MECHANICS' MAGAZINE.

NEW AND CHEAPER EDITION.

From the great sale which this work continued to have, long after the completion of the Series, the proprictors were indticed to have the whole of it revised throughout from the commencement. In dolng this, the plan they adopted was to exelude any articles which appeared of less value to the scientiffe inquirer, and such as were more of a temporary interest. Thay are happy to say this has met with the approbation of the public, by a sale wnprecesicnted in the annals of periodical liferature, To such an extent, indeed, has the sale exceeded their expectations, that they are now enabled to annonnce

A Reduction in the Price of the Works of ONE-FOURT疎,

This sacrifice on their parts they trust will be a great boon to the indastrious classes, and will be by them duly appreciated. And to bring it still further within their means of attainment, the proprictors have further to announce, that they will commence a reissue of the Work on the 2nd of April, in Mouthly Sia Shilling Votianes.
The Glasgow Mechanics' Magazine, with the alterations and improvements which it has undergone, ought now to be considered more in the light of

"A STANDARD BODY OF PRACTICAL SCIENCE,"

which it in reality is, than in that of "a Magazine" of the times, the utility of which, in most cases, lasts but for a day. The most eminent scientific men have contributed to these volumes, and numerous have been the laudatory notices from all quarters, that have appeared of it. Amongst many others which might be adduced, they may mention, that the celebrated Dr Gregory, in his Mathematics for Practical Men, quotes numerous articles from it, and refers his readers to "that useful publication." Lord Brougham characterises the work as having been "carried on with great spirit ;" and he further adds, that he found it "remarkabily full of useful information $j^{\prime \prime}$ " no small recommendation from an authority so high. The Leeds Mercury, under the management of Mr Baines, M.P., among a host of other Journals which reviewed this work, in noticing it, remarked, " It appears to be conducted by a set of practical men, who understand well what they are about, and who are well calculated to execute the task they have undertaken."

M'PHUN'S Useful Series of Pocket Guides.

Just Published, Price Is. 6d.,

TaE PRACTICAL MATHEMATICIAN'S POCKET GUIDE; a Set of Tables of Logarithms of Numbers, and of Logarithmic Sines and Tangents; with other Useful Tables for Engineers, Surveyors, Mechanics, \&c. By R. Wallace, A.M.

Scoond Thousand.-The POCKET GUIDE to the PRE. SERVation of the teeth. By Mr Nisbet. Price ls,

Third Thousand.-THE PRACTICAL ENGINEER'S POCKET GUIDE, price Is, 6 d .

Third Thousand.-The POCKET GUIDE to COMMERCIAL BOOK-KEEPING, price is. Gd.

Seventh Thousand.-The PRACTICAL MECHANIC'S POCKET GUIDE, price is. 6 d .
Second Thousand. - The APPRENTICES POCKET GUIDE to WEALTH and ESTEEM, price 1s. 6 d .
Third Thousand.-The POCKET GUIDE to MODERN GEOGRAPHY, 2s, 6d. Plain ; 5s. Coloured.
Sisth Thousand.-The POCKET GUIDE to DOMESTIC COOKERY, price 1s. 6d.
Second Thousand,-The YOUNG HOUSEKEEPER'S POCKET GUIDE, price 1 s .6 d .
Sizth Thousand.-The POCKET MEDICAL GUIDE, price 1s. 6 d .
Fourth Thousand.-The MOTHER'S POCKET GUIDE, price 1s. 6d.

Sixth Thousand.-The MERCHANTS' and BANKERS' COMMERCIAL POCKET GUIDE, price 1s. 6 d.
Third Thousand.-The SCOTTISH TOURIST'S STEAM BOAT POCKET GUIDE, price 2s, 6d.
Second Thousand.-The POCKET GUIDE to the PICTURESQUE LAND SCENERY of SCOTLAND, price 25. 6 d .

Fourth Thousand-The POCKET GUIDE THROUGH GLASGOW, price 2s. 6d.
Third Thousand,-THE SHORT-HAND WRITER'S POCKET GUIDE, price Is. 6 .

Second Thousand-THE SHORT-HAND READER'S POCKET GUIDE, price 2 s ,

In the Press.
The UNIVERSAL CALCULATOR'S POCKET GUIDE,
The YOUNG CHEMIST'S POCKET GUIDE
The CHRISTIAN TEACHER'S POCKET GUIDE,

The Late Dr MACNISEIS WORKS.

I.

Price 7s, cloth boards, THE FIFTH THOUSAND OF

THE PHILOSOPHY OF SLEEP.

Contents.-Chapter 1. Introduction. 2, Sleep in general. 3. Dreaming. 4. Prophetic power of Dreams. 5. Night-Mare. 6. Day-Mare. 7. Sleep-Walking. 8. Sleep-Talking. 9. Sleeplessness. 10. Drowsiness. 11. Protracted Sleep. 12. Sleep from Cold. 13. Trance. 14. Walking Drearns. 15. Spectral Illusions. 16. Reverie. 17. Abstraction. 18, Sleep of Plants. 19. General Management of Sleep.
II.

Price 6s.,

THE SIXTH THOUSAND OF THE

ANATOMX OF DRUNKENMESS.

Contents.-Chap, 1. Preliminary Observations, 2. Causes of Drunkenness. 3. Phenomena of Drunkenness. 4. Drunkenness modified by Temperament. 5. Drunkenness modified by the lnebriating Agent. 6. Enumeration of the less common Intoxicating Agents. 7. Differences in the Action of Opium and Alcohol, 8. Physiology of Drunkenness. 9. Method of curing the Fit of Drunkenness. 10. Pathology of Drunkenness. 11. Sleep of Drunkards. 12. Spontaneous Combustion of Drunkards. 13. Drunkenness Judicially considered. 14 Method of Curing the Habit of Drunkenness. 15. Temperance Societies. 16. Advice to Inveterate Drunkards. 17. Effects of Intoxicating Agents on Nurses and Children. 18. Liquors not always hurtful.

> III.

Price 5s.,

THE BOOK OF APHORISMS.

IV.

Price 6d.,

THE CONFESSIONS OF AN UNEXECUTED FENEICIDE.

V.

Price 1s.,

Phrenology Simplified.

Just Published,
Price 2s. 6d., bound in eloth,

The Philosophy of Phremology Simplified.

By a Member of the Phrenological and Philosophical Societies of Glasgow.
${ }^{\text {* }}$ The favourable opinion we expressed of this work at its first appearance, has been more than confirmed by an examination of the seeond edition, which has just been laid upon our table. The estimation in which it is held by the public is fully proved by the rapid sale of a large impression, and the third thousand is issued forth in a greatly improved form, with about fifty pages of entirely new matter. We do not hesitate to characterize this as the beat popular introduction to Phrenology extant, and we are surprised that it should still appear in an anonymous shape. It is well known to be the production of the able Professor of Anatomy in Anderson's University, one of the most zealous and intelligent Phemologists in this city, and assuredly it is a work that does the higheat honour to his talents, In a work so well known, it is unnecessary to enter into any minute examination of the contents, and we have therefore only to rocommend all who desire a knowledge of the subject, to avail themselves of Dr Hunter's labours. The volume is got up in a neat portable form ; and, looking to the amount of matter, and to tho illustrative plates that accompany it, it must be considered at the same time as comprehensive and cheap. "-Argus.

[^0]THE

PRACTICAL MECHANIC'S

POCKET GUIDE;

OR 4
CONCISE TREATISE

OX THE
PRIME MOVERS OF MACHINERY,
AND THE
WEICHT AND STRENGTH OF MATERIALS,
Wrrit numerove
PRACTICAL RULES AND TABLES,

By ROBERT WALLACE, A.M., Blythsweod Hill Mathematieal Academy

> GLASGOW:
W. R. M'PHUN, PUBLISHER, 86, TRONGATE. N. H. COTES, LONDON; W. WHYTE \& CO., EDINBURGH,

mpccoxxx viII.

Printod at the Glagyow University Press, by E. Khull,

TO

ROBERT NAPIER, EsQ., vUlCaN poundery, glasgow,

MEMBER OF THE GLASGOW PHILOSOPHICAL SOCIETY,

As a testimony of esteem for his character as a Gentleman, and of admiration of his skill and success as a Practical Engineer, this Concise Treatise on subjects of great and increasing importance, and intimately connected with his daily avocations, is respectfully inscribed by his

Most obedient servant,

THE PUBLISHER.

PREFACE.

Anowo the numerous publications, in the shape of Manuels and Text-books, for the use of Mechanics and Engineers, which have originated in the recent spirit of inquiry, sprung up among the working classes of this country, there seemed still to be wanting, some work which should bring the theory of Mechanical Power, as regards prime movers, to bear more decidedly on practice: and, which should at the same time, take a proper estimate of the limits within which Mechanical constructions are manageable in point of weight, and safe in point of strength. In the first section of this Treatise, is contained an attempt to supply, in some degree, the former desideratum in reference to the prime agents in most common use; in the second section, an attempt is made to supply the latter in reference to the weight and strength of the materials generally employed in constructions. In the third section, will be found a very extensive set of useful tables; first, of the welght of jron, and other metals in various shapes; second, of the specific gravity and weight of materials ; third, of steam and steam engines ; fourth, of the specific cohesion and streugth of ma . terials ; fifth, of the mechanical powers. But throughout the whole Treatise, a number of useful tables are interspersed, as may be seen by reference to the table of contents ; the siath thousand of this work is now at press. The sequel, under the title of "The Practical Engineer's Pocket Guide," just ready for publication, contains the nature and application of Mcchanical Forees; the Effects of Friction and other Eesistances ; and the Elements of Machinery.

These two works, it is hoped, will go far to supply working mechanics and engineers, with a useful manual of practical information, on most subjects of inquiry connected with their daily lusiness ; and to the more youthrul portion of our readers especially, we embrace this opportunity of recommending to their attention, as likely to add much to their happiness and advancement in the world, another of our publisher's serles of Pocket Guides which has just apneared, under the title of "The Apprenilice's Pocieh Gudide to Weallh and Estecm."

CONTENTS.

SECTION I.

PRIDE MOVERS OF MACHINERY.

CHAP. I.

antual powan.

CHAP 12.
TEFD POWCER.
Aniomomuster,13

Iusle to fund the force of the wind,

ㅎov do, $\quad=14$
Tables of do. do, $=14$
Rale to And the relocity duo to the height in fallingledies, 15
Velocity of air ruahing into a vacuum,
Ftale to find the Time of flling a versial with nir, $\quad=16$
Tables of do. flo. $\quad 16$
Pule to flnd thie refocity nunt discharge of air from a vessel, 16
Table of do. do $=17$
Cerious theorems, - 18

CHAP. TII.
WATIH POWER.
Potsmometer, or Streom MAeE
Potamometer, or Stream Measurer, * - " 19
Rule to find the helpht due to a given velocity in falling bodies,
Table of the divisions of a Potamomotex, - - - 19
Definitions - - ~ 20
Bule to find the mean velocity of a rivor, - - - 2I
Eules to find the force of vater impinging egainst a jlane murface $=-\quad 28$ Tables of do. त० $\quad 22$
Rule to find the Effective Power of a stream, = $\quad 2$ Deffinitlons, - - - 24
Rule to find the natural Discharge of a stream or reservoir, - - - - 25
Table of Corrections to flnd the efficotive Dischargeg - 95
Table of natuxal Dischargosand Velocities, -
Enle to find the effectivePower of a stream, or waterfill, $=27$
Mr. Thom's rule for der - 83
Ehaw's waler-scheme, account

- - - 83

Ioch Them, do. - 89
Sir John Leslic's estimato of the mechanical value of rain on theglober $=$ - 30
Mechanical value of rain in this iskand,
Force of the Tider aronnd this filand,
g3
River or Thle mills, = $=$ g
Nule to find the powrer of unilershot whecls, 89
Raie to find the povrer of overshot wheels, 3C

CEAP. TV.

Atmospheric cngines Fag=
Proportion of the parts of a eteam engine, $=-4 \mathrm{H}$
Do. In the common ntmoepheric, - - 40
Do. in the atmospherio with condenser, $=-\quad=\quad 49$
Do. in thosingle seting; * ©
Io. in the double acting, ©o
Effective Pressure of steam in engines,
Tofind do. in the single acting, 51
Th find do. in the double acting, 59
To calculate the power of a steam engine, $=-\quad=\mathrm{Bg}$
Do. when the steam acts expannively,53
High pressure engines, 83
To calculate tho power of do. 51
Do, when the engine in work-ing expansively,55
Length of stroke and velocityof an engine,55
Comparstive table of the power

team enginels,	-	57
Eteam guage,	-	57
Condenser guage,		88
Indicator,		
Governor,		
Safety vulve,		

SECTION 11.

WEIGHT, STRENGTH AND STRAIN OF MATERLALS,

CHAP I.

WITOMT OF MATERIALA.

Defintions, - Corollaries, Standard of weights Epecific gravitlen and weights, Practioal remarks, Rule to find the weight of a My wheel, Hule to find the mpecificgravity of a a olid body Do. do. of a fuld body, To fud the weight of two dif- ferent ligredients in a come pound mass,	

CHAP. II.

ETRENOTH AND BTRAIN OF

MatKBIals.

Diffesent kinds of strain,
68
Forces of cohesion and elastieity, $=-\infty$
Table of the mean atrangth and elasticity of materials
Ruic to find the force of direct cohestion, - - - 00
Rule to find the dimengions of a beam to resist a given longitudinal strain,
Bules to find the force of resiet-
ance to transverse strain,
Pagn

Remarks on cylindric heams, acs
Rule to find the hreadth and depth of a beam to support a given load,
Ruiey to find the defectlon of
heams, 74
Rale to ind the weight to produce a given defliection,

72 73

75

Finle to and the depth of a heain to hear a given load, with a given defection, - 70
Practical remarki - - 70
Modulns of elasticity, *. - 77
Fule to find the weight whicts a column will suppart before flexurs, - $\quad 77$
Resistance of Materials to torsion or twisting - - 78

SECTION III.

PRACTICAL TABLES.

1. WFiont of matal.s.

Table I. Square iron, Tahle II. Kound iron, Table III. Mat iron, Tahle of Muitipliers for metals. Table IV. Metal plates, Table V. Cast metal bai Table VI. Cast inetal cy Tahle VII Cast iron pif 11. apecific oravity ar	

Tahle I. Properties of atenm, 105
Table II. Elastle force of steam, 104
Table IIL Single acting nteam

Table IV. Douhle acting do. 106
Tahle V. High pretanare do. 107IV. SPECTFIC COMRAYOR ANDgTRENOTH DY MATEBYALS.
Table I. Metalin, " - 108
Table II. Woode, - - L 19Table II: Other snbstances, 110Tabla IV. Direct colenion ofmetals, - - - . IIITable V. Rezistance of metalnto toraion, - - - 12
Table V1. Itesintance of metalsto prexsure - - 112
Tahle VII. Realstance of wroods toprensure - - - 112
Table VIIL Resistance of stunes to pressuze, - - - II3 Table 1X. Modulus of elastlelty and cohesion of materials, 114 Thale 3 . Adhesion of nails, 114 Practieal remarks, - - 115 Pressure and extraction of nails " - . . . 110

THE

PRACTICAL MECHANIC'S
 POCKET GUIDE.

SECT. L-PRIME MOVERS OF MACHINERY.

CHAP. I.

ANIMAL POWER.

1. The force of men and animals to pat maohinery in motion and to produce mechanical effects of various kinds, depends so much on a variety of complicated circumstances, that it is very difficult to reduce it to a fixed standard of measure. The circumstances which have the greatest share in determining the amount of this force are, the natural constitution of different individuals of the same species, their acquired dexterity or constant practice, the nature of the performance, or the muscles brought into action, and the duration of the labour or the speed with which it is performed. Few of these points can be made the direct subject of calculation, owing to our total ignorance of the divine mechanism by which the living principle is made to operate on the animal structure.
2. Definitions.] The laborious effort which an animal can make for a fow instants, is greatly superior to that which he can continue to make for the
period of a day's labour. The momentary effort is called the absolute force, and the daily effort the permanent force. In performing the daily effort there is a certain speed or velocity of action which produces the greatest amount of useful effect; this is called the maximum effect of the permanent force. D. Bernouilli considered that the measure of the permanent force of man is nearly a constant quantity, and that it does not vary much either among individuals or in different kinds of labour. Venturoli and others doubt this fact, owiug perhaps to the mode in which this force has been estimated; but we think that Bernouilli is right, and that the proposition may be extended to the permanent force of other animals; this force, of course, varying with the species.

The ordinary method of computing mechanical effect or animal power, is by finding the weight that can be raised to a certain height in a given time; then, the product of these three quantities is called the measure of the labour or force employed in raising the weight, that is, the mechanical effect. Force is also measured by dynamic units; thus, a given measure of water or a given weight raised through a given space is a dynamic unit; so is the power of an animal exerted during a given unit of time. In France, a dynamic unit is the weight of a cubic metre of water raised to the height of a metre, or 2208 lbs raised 3.281 feet. In England, the most common dynamic unit is a horse's power, which is variously estimated by engineers. There can be no doubt that a practical man must form a more correct idea of the quantity of mechanical power expressed by this dynamic unit than by
any other that could be proposed : because the power of the horse is constantly brought under his observation, both in the impulsion of machinery, aud in the transportation of loads.
3. The Dynamometer is an instrument for measuring the absolute force of men and animals. Dynamometers of various kinds have been invented; those of the simplest construction are the same in principle as the spring steelyard; others are either modifications of this instrament or a combination of levers with the spring. The Dynamometer of Regnier consists of an elliptic spring which is bent either by pressing it together at the vertices of the minor axis, or drawing it apart at the vertices of the major axis. In both cases; the sides of the spring are made to approach each other, and thus to move an index which points to a graduated semicircle, and shows the amount of force which has been applied to bend the spring. The semicircle is doubly graduated; the one scale indicates the force applied at the vertices of the minor axis; the other scale, that applied at the vertices of the major axis. For a further account of similar instruments, see Lardner's Cyclopædia, vol. v. p. 305.
4. Human Strength.] The absolute force of pressure with the hands was found by the dynamometer of Regnier, to be on an average equivalent to the weight of 110 lbs . The most advantageous and couvenient position of the arms in pressing, is that of a line which makes an angle of 45° with the vertical. The right hand commonly presses with more force than the left; and the force of both together is equivalent to the sum of the forces of each taken separately.

The absolute force of man in lifting a weight with both hands was found by the dynamometer to be on an average equivalent to 286 lbs . The best position of the body in this case is the erect, with the shoulders slightly inclined. The greatest average load which a man can support on his shoulders for some instants, is commonly reckoned 330 lbs ; and it is supposed that he can exert the same force in drawing vertically downwards; but these results are not dynamometrically aseertained.

The mean absolute force of man in drawing or pulling horizontally was found by the dyuamometer to be the same as that exerted in pressure with the hands, or 110 lbs . The force of the horizontal pull in the strongest men was found to be only about 20 lbs . more than the average; while in the other modes of applying force, much greater differences occurred. The reason appears to be, that in drawing, the force depends more upon the weight of the body than upon muscular force.
5. Human Labour.] The permanent force of men and animals cannot be accurately ascertained by the dynamometer; it is only by a series of careful observations on daily labour, that we can arrive at the average useful effeet of animal exertion. In order to compare the different estimates of the force of moving powers, Dr. T. Young assumed, as a dynamieal unit, the mean effect of the labour of an active man working to the greatest possible advantage : this he considered to be a foree capable of raising 10 lbs .10 feet in a second for 10 hours a day; or, 100 lbs. , which is the weight of $10 \mathrm{im}-$ perial gallons of water, 1 foot in a second, or 36,000 feet in a day; or, $3,600,000 \mathrm{lbs}$., or 36,000 impe-
rial gallons, 1 foot in a day : this may be called a force of 1 , continued for 36,000 seconds.
M. Schulze, of Berlin, made a series of valuable experiments, in order to determine the accuracy of Euler's empirical formula, or rule expressing the relation between the force and the velocity of animal agents. From experiments on 20 men, of different sizes and constitutions, he found their mean absolute force, in lifting weights, to be about 250 lbs. ; and in a level pull, about 100 lbs , when standing still, and holding a silken cord passing horizontally over a pulley fixed above a pit, into which weights were suspended at the other end of the cord.

Their mean absolute velocity, that is, when unencumbered by any load, was next ascertained by experiments made on a level plain, where the men marched at a fair pace, without running, for a period of 4 or 5 hours. This velocity was found to be about $5 \frac{1}{3}$ feet per second, or 320 feet per minute, or 3 IT miles per hour.
6. Their mean relative or permanent force was next determined by comparing their force in turning an upright cylindrical machine, with that of the weight which made it revolve, suspended at one end of the cord above mentioned. This mean force was found to be equivalent to about 30 lbs ., moving with a velocity of $2 \frac{1}{2}$ feet per second." From numerous comparisons, Smeaton concluded that the mechanical power of a man is equivalent to 3750 lbs , moving at the velocity of one foot per minute: Mr. Tredgold estimates from this conclusion, that the average mechanical power of a man is $31 \frac{1}{4} \mathrm{lbs}$., moving

* Philosophical Magazine, vol, xxxix. No. 168.
at the velocity of 2 feet per second, when the useful effect is the greatest possible; or half a cubic foot of water raised 2 feet per second-a very convenient expression for hydrodynamical inquiries. This estimate is very nearly the same, therefore, as that derived from M. Schulze's experiments. Mr . Tredgold states, that if a man ascend a ladder vertically, the velocity corresponding to the maximum of useful effect will be one foot per second, and the load double what he carries horizontally; consequently, the average of useful effect is $62 \frac{1}{2} \mathrm{lbs}$., or 1 cubic foot of water raised 1 foot per second. Dr. O. Gregory states, that according to the best observations, the mean force of a man at rest is 70 lbs., and the utmost velocity with which be can walk is about 6 feet per second, taken at a medium. He thence deduces $3 \mathrm{I}_{\frac{7}{\mathrm{y}}} \mathrm{lbs}$, as the greatest useful effect which a man can exert when in motion; the velocity being 2 feet per second, or rather less than $1 \frac{1}{2}$ miles per hour. ${ }^{*}$

7. Dr. Gregory demonstrates the following mechanical theorems, and shows their applicability to the mean action of men and animals:-1. The absolute velocity of an animal is to its relative velocity, that is, when impeded by a given resistance, as the square root of its absolute force is to the difference of the square roots of its absolute and relative forces. 2. The work done by an animal is greatest, when the velocity with which it moves is $\frac{1}{3}$ of its absolute velocity; or, when its relative force is $\frac{4}{\theta}$ of its absolute force. 3. The greatest useful effect is consequently $\frac{4}{27}$ of the product of the absolute force and the absolute velocity.

* Gregory's Mechanics, vol. i. p. 319.

8. Sir John Leslie, ${ }^{*}$ with his usual tact,has simplified Euler's formula, as confirmed by the above experiments, and we may now express it in the words of the following rule:-Given the velocity, or rate per hour, at which a man travels, to find his power or force of traction:-Square the difference between 6 miles and the given velocity in miles, multiply by 2, and the product will be the required force in pounds avoirdupois. This rule gives the following results:-

Velocities,	0	1	2	3	4	5	6
Forces,	72	50	32	18	8	2	0

From this rule, it appears that the greatest useful effect is produced, when a man walks at the rate of 2 miles an hour, his power of traction being then 82 lbs ; this amounts to a force of $3,379,200$ lbs., raised 1 foot per day of 10 hoursan estimate which is only about is part less than that assumed by Dr. T. Young.
9. In other kiuds of human labour, such as climbing stairs, ladders, and mountains, loaded or unloaded; pumping water, sawing wood and stones, driving piles, working at a capstan or windlass, wheeling loaded barrows, digging with a spade, turning a winch, sce., it is almost impossible to establish any proper means of comparison, or to reduce the calculations of the forces employed in each kind of labour to a common or fixed rule. For farther illustration of this subject, therefore, we must refer to the authors already cited, and to such well-known writers as Desaguliers, Emerson, Coulomb, and Hachette. See Gregory's Mechanies, arts, 66-69.

* Natural Philosophy, p. 281.

10. Horse Power.] The absolute force of the horse in drawing horizontally, as ascertained by the dynamometer, is on an average no less than 770 jbs. ; consequently the power of a horse in this kind of momentary exertion, is equal to the force of 7 men. The amount of the permanent force of a horse, however, is found to be considerably less than this, varying from that of 6 men to that of 5 meu, according to different estimates. Dr. O. Gregery reckons the power of a horse equivalent to that of 6 men ; but he states this power as equivalent only to 420 lbs , at a dead pull. Desagulicrs, Smeaton, and Leslie, reckon the power of a horse equivalent, on an average, to that of 5 men. Tredgold reckons a horse power equal to that of 6 men, at a medium, and the rate of travelling about the same as, or perhaps rather less than, that of a man, when continued for 8 hours.* On the whole, it appears, when the period of continuance is made an element in the calculation, that the power of a horse, working 8 hours a-day, is, on an average, not more than equivalent to that of five men, working 10 hours a-day.
11. Permanent Force of a Horse.] Desaguliers reckons that a horse will walk at the rate of $2 \frac{1}{2}$ miles per hour, against a resistance of 200 lbs ., that is, at the rate of 220 feet per minute: a horse's power is therefore equivalent to a force that will raise $44,000 \mathrm{lbs} .1$ foot per minute, when working 8 hours per day. Mr. Watt found, from repeated experiments, that a horse treading a mill path at the rate of $2 \frac{1}{3}$ miles an hour, will, on an average, raise about 150 lbs. by a cord hanging over a pul-

[^1]ley, which is equivalent to raising $33,000 \mathrm{lbs}$, 1 foot high in a minute. His steam-engines were calculated to work at the rate of $44,000 \mathrm{lbs}$ per horse power; but he allowed only 33,000 lbs. in his calculations, considering the difference due to loss by friction. Boulton and Watt ultimately estimated the horse power at $32,000 \mathrm{lbs}$. Tredgold reckons it at 27,500 lbs. when continued 8 hours a-day, and 33,000 lbs. when continued 6 hours a-day. Smeaton estimated a horse power at $22,916 \mathrm{lbs}$; this is generally considered too low, otherwise the loss by friction must have been very considerable. It is common in practice, to reckon that it requires one horse's power to drive 100 spiudles with preparation of cotton water twist; 1000 spindles with preparation cotton mule yarra; and 75 spindles with preparation flax yarn. See Buchanan on Mill Work, p. 157.
12. Leslie bas elegantly simplified Euler's formula, as applied to the power of a horse in drawing; * and we may now express it also in the words of the following rule :-Given the velocity or rate per hour at which a horse travels, to find his power of traction:-Square the difference between 12 miles and the given velocity in miles, the result will be the required power in pounds avoirdupois. From this rule we obtain the following results : -

Velocities,	0	1	2	3	4	5	6	7	8	9	10	11	12
Forces,	144	121	100	81	64	49	36	25	16	9	4	1	0

Thus it appears that the greatest useful effect is produced when a horse walks at the rate of 4 miles an hour, his power of traction being then 64 lbs ; this amounts to a force of $22,528 \mathrm{lbs}$., raised 1 foot

[^2]high per minute-an estimate which agrees very nearly with that of Smeaton.

13. The power of a horse depending greatly on his speed, formule have been given for the calculation of this element, according to its duration. The following rule is derived from Leslie's formula:Divide the square of the difference between 20 hours, and the given duration of a horse's motion in hours by 25 , and the quotient will be his maximum velocity in miles per hour when unloaded. Hence, we have $\begin{array}{lllllllllll}\text { Durations, } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$ Velocities, $14 \frac{2}{2} 1311 \frac{1}{6} 10 \frac{1}{4} 9 \quad 7 \frac{7}{4} \quad 6 \frac{3}{4} \quad 5 \frac{3}{4} 4 \frac{7}{8} 4$

Tredgold's formula gives the following rule for the same purpose:-Divide 14.7 by the square root of the duration in hours, and the quotient will be the maximum velocity in miles per hour, when unloaded. Hence, we have
Durations, $\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$ Velocities, $14 \frac{3}{4} \quad 10 \frac{1}{2} 8 \frac{1}{2} 7 \frac{1}{3} 6 \frac{2}{3} 6 \quad 5 \quad 5 \frac{1}{2} 5 \frac{1}{4} 54 \frac{2}{3}$

These results nearly agree with the former in the extreme cases, but differ considerably in the intermediate cases. Tredgold's formula for the power of a horse's traction, expressed in words, is as follows:-Divide the difference between the maximum velocity, when unloaded, and the given velocity, when loaded, at the given duration of labour per day, by the snid maximum velocity, and multiply the quotient by 250; the result will be the horse's power of traction in lbs. Taking the hours of labour at 6 per day, the utmost that he would recommend, the maximum of useful effect will be 125 lbs. , moving at the rate of 3 miles an hour; considering the expense of carriage at this rate as unity, the comparative moving force, and propor-
tional expense at different velocities, will be as follows:-

Velocities,	2	3	$3 \frac{1}{2}$	4	$4 \frac{1}{2}$	5	$5 \frac{1}{8}$
Forces,	166	125	104	83	$62 \frac{1}{2}$	$41 \frac{2}{3}$	$36 \frac{1}{2}$
Expense,	$1 \frac{2}{8}$	1	$1 \frac{1}{3} 5$	$1 \frac{1}{8}$	$1 \frac{2}{3}$	$1 \frac{4}{5}$	2

Thus it appears that the expense, which is inversely proportional to the effect, that is, the product of the force and the velocity, is doubled when the speed is increased from 3 to $5 \frac{1}{8}$ miles per hour.
14. According to the precerling rules of Tredgold, the greatest useful effect of the horse is $125 \times 3 \times 6$ $=2250 \mathrm{lbs}$. raised 1 mile per day. In comparing this with fact, Mr. Bevan who made many experiments on a horse's power in dragging boats on the Grand Junction canal, found the force of traction to be 80 lbs ., and the space travelled in a day 26 miles ; this gives the greatest useful effect equal to $80 \times 26=2080 \mathrm{lbs}$. raised 1 mile per day, the rate of travelling being barely $2 \frac{1}{2}$ miles per hour.
15. The most useful mode of applying a horse's power is in draught, and the worst is in carrying a load. This is owing to the structure of the animal. It has been found that 3 men carrying each 100 lbs . will ascend a hill with greater rapidity than 1 horse earrying 300 lbs . When a horse has a large draught in a waggon, however, it is found useful to load his back to a certain extent; this prevents him from inclining so much forward as he would otherwise do, and consequently frees him from the fatigue of great muscular action.
16. The best disposition of the traces in draught is when they are perpendicular to the collar; when the horse stands at ease, the traces are then inclined to the horizon, at an angle of about 15°; but when
he leans forward to draw, the traces should then become nearly parallel to the road. The most proper inclination, however, is determined from the relation which subsists between the friction and the pressure, in every particular case. When a horse is employed in a gin, or in moving a machine by travelling in a circular path, the diameter of his path should not be less than 25 or 30 feet, and in most cases 40 feet should be preferred; at all events it should not be less than 18 feet.
17. The following is a useful table from Tredgold, showing the maximum quantity of labour which a horse of average strength is capable of performing at different velocities, on canals, railways and turnpike roads.

Velocities yer Hour	Day'g Work.	$\begin{gathered} \text { Force } \\ \text { of } \\ \text { Traction. } \end{gathered}$	Upeful effect per day for a distance of 1 mila on a		
			Canal.	$\begin{array}{c\|} \hline \text { Level } \\ \text { Rallway, } \end{array}$	Level
Miles,	Houra.	Les.	Tons.	Tans.	Tona
$2 \frac{1}{3}$	112	831	520	115	14
3	8	do.	243	92	12
$3 \frac{1}{2}$	$5 \frac{\square}{10}$	do.	153	82	10
4	$4 \frac{1}{2}$	do.	102	72	9
5	$2{ }^{\text {109 }}$	do.	52	57	$7 \cdot 2$
6	2	do.	30	48	$6 \cdot 0$
7	12	do.	19	41	$5 \cdot 1$
8	$1 \frac{1}{8}$	do.	$12 \cdot 8$	36	$4 \cdot 5$
9	$\frac{9}{10}$	do.	$9 \cdot 0$	32	$4 \cdot 0$
10	$\frac{3}{4}$	do.	$6 \cdot 6$	$28 \cdot 8$	$3 \cdot 6$

In comparing this table with practice at the higher velocities, it is reckoned necessary to add $\frac{1}{8}$ more than the useful effect, for the total mass
moved. Now, the actual rate at which some of the rapid coaches travel is 10 miles an hour ; the stages average about 9 miles ; and a coach with its load of luggage and passengers anounts to about 3 tons; therefore the average day's work of 4 coach horses is 27 tons, drawn 1 mile, or $6 \frac{3}{4}$ tons drawn 1 mile, by 1 horse. At the rate of 10 miles an hour, the table gives 3.6 tons, which increased by $\frac{1}{3}$ makes 4.8 tons drawn 1 mile, for the extreme quantity of labour of a horse at this rate, upon a good level road. To this result should be added the loss of effect in ascending hills, passing heavy roads, \&c., which will make the actual labour performed by a coach horse about double the maximum given in the table. The injurious consequences are well-known.

CHAP. II.

WIND POWER.

18. The force of the wind is a prime mover of great utility in situations where a supply of water is scarce, or where animal power is expensive. From the variable nature of the atmosphere, the calculation of its force in a given direction, is a matter both of difficulty and uncertainty. The Anemometer is an instrument for measuring the force or velocity of the wind. M. Bouguer's anemometer consists of au apparatus like the spring steel-yard, furnished with a float-board or plane surface of given area, which is exposed to the wind, and the pressure orimpulse is indicated by the mark on the sliding rod of the spring. Dr. Lynd's anemometer, which ia
similar in construction to M. Pitot's potamometer, determines the velocity of the wind, by means of a small quantity of water in the recurved branch of the tube. (See art. 25.)
19. The force of the wind is considered to be nearly proportional to the square of the velocity in direct impulse ; and nearly proportional to the product of the square of the velocity and the square of the sine of the angle of incidence in oblique impulse. From experiments by Rouse and Smeaton, a formula was ascertained which may be expressed in the following words:-Given the velocity of the wind in feet per second, to find the force of its perpendicular impulse on a square foot in lbs. avoirdupois :-Multiply the square of the given velocity by $2 \frac{3}{7}$ and divide by 1000, the quotient is the required force in lbs. This rule gives the following forces in lbs. for the velocities in feet :-

If the velocities be given in miles per hour, the forces in lbs, will be,

Velocities,	10	20	30	$4)$	50	60	50	80	90	100
Forces,	$\frac{1}{2}$	2	$4 \frac{1}{7}$	$7 \frac{7}{8}$	$12 \frac{1}{8}$	$17_{土}$	24	$31 \frac{1}{4}$	39	49

The winds moving with the latter velocities were characterized by the following names, in Rouse's table :- Pleasant gale, brisk gale, very brisk, high winds, very high, storm or tempest, great storm, hurricane, and great hurricane. When the impulse of the winds is oblique, the forces in the preceding tables must be multiplied by the squares of the sines of the angles of incidence, to obtain the true forces. Borda found by experiment that the force of the wind was greater by about a tenth part
than what we have assigned above; and that on different surfaces with the same velocity, the force increased more rapidly than the surface. Huttou also showed that the forces at great velocities increased in a somewhat higher ratio than the square of the velocity.
20. It is demonstrated by writers on Mechanics, that common air rushes from the atmosphere into a void, with the velocity which a heavy body wouid acquire by falling from the top of a homogeneous atmosphere. This velocity is ascertained in the following manner: The pressure of the atmosphere is found to support a column of water at the mean height of 33 feet, and air is ahout 840 times lighter than water ; therefore the height of a homogenous atmosphere (that is, of air having the same density throughout,) is equal to $33 \times 840=27720$ feet, or $5 \frac{1}{4}$ miles. Now, the velocity due to the height from which a heavy body falls, is found by the following rule: Multiply the square root of the height in feet by 8, and the product is the required velocity in feet per second. Thus, the velocity with which air rushes into a perfect vacuum is 8 times the square root of 27720 , or nearly 1332 feet per second. Now since the pressure of the atmosphere is nearly 15 lbs . on every square inch of surface, the enormous force ohtained by the formation of a vacuum under the piston of a cylinder must be obvious. According to the rule in the preceding, article, a wind rushing through the atmosphere with the same velocity that air rushes into a vacuum, would act with the extraordinary force of $4055 \frac{3}{3} \mathrm{lbs}$, on the square foot, or $28 \frac{1}{5} \mathrm{lbs}$. on the square inch, a force equal to double the preasure of the atmosphere, and nearly 200
times greater than that of the most tremendous hurricane.
21. The time in which a vessel void of air will be filled with that fluid is found thus: Multiply the area of the orifice in feet by 666, and divide the eapacity of the vessel in cubic feet by the product, the quotient is the time in seconds. If the experiment be made with a hole cut in a thin plate, the time will be greater than that given by this rule, by $\frac{6}{10}$ nearly. Thus, the theoretical and experimental times of filling vessels of the following capacities in cubic feet, through an orifice of 1 square inch, will be,

Capacities,	1	2	3	4	5	6	7	8		9	
'T. Seconds,	'22	45	${ }^{6} 5$	87	108	130	$1 \cdot 51$	173		1	
E. Seconds,	'35	'69	1.04	1359	1.73	208	24	27		$3 \cdot 1$	

The cause of the difference between the theoretical and experimental time of filling a vessel, is one common to all fluids, arising from the contraction of the jet at a short distance from the or:fice, where the velocity due to the height is acquired; this will be more distinctly pointed out in the chapter on Water Power.
22. If a piston be employed to expel the air from a cylinder through a small hole, the velocity of its discharge will be found thus: Multiply the square of 1332 by the pressure on each square inch of the piston, divide the product by the sum of this pressure and the atmospheric pressure, and extract the square root of the quotient for the required velocity in feet per second. This velocity multiplied by the area of the orifice in square feet will give the cubic feet of condensed air discharged in a second. This discharge being multiplied by the sum of the load on the piston per square inch and the atmospheric pressure,
and the product being divided by 15 , will give the quantity of common cir in cubic feet discharged in a second.

The following tahle, which will be useful in the construction of blowing machines, shows in the first column the number of pounds with which every square inch of the piston is loaded above the pressure of the atmosphere; the second, the velocity of the condensed air in feet per second; the third, the discharge of condensed air in cubic feet, through an aperture of one square inch in area; the fourth, the mean velocity of the common air, in feet per second; the fifth, the discharge of the common air in cubic feet, through an aperture of a square inch; and the sixth, the height in inches at which the force of the blast would support a column of water if a pipe were inserted in the side of the cylinder.

Load.	Velocitr.	Discharge.	Velucity.	Discharge:	Waters
tbs.	feet.	cuble ft.	reet.	cubte ft.	incliea
$\frac{1}{4}$	239	1.66	247	1-72	14
1	333	$2 \cdot 31$	355	$2 \cdot 47$	27
$1 \frac{1}{2}$	404	$2 \cdot 79$	437	3*05	40
2	457	$3 \cdot 17$	518	$3 \cdot 60$	54
$2 \frac{1}{2}$	500	$3 \cdot 48$	584	$4 \cdot 20$	68
3	544	3+76	653	4-53	82
$3 \frac{1}{2}$	582	4*03	715	4*98	95
4	611	4-24	774	5-38	109
$4 \frac{1}{2}$	642	4-46	822	$5 \cdot 75$	122
5	666	$4 \cdot 67$	388	$6 \cdot 17$	136
$5 \frac{1}{2}$	693	4*84	950	6.49	150
6	711	$5 \cdot 06$	997	6.92	163

The sixth columan will show at all times the power of the blowing machine, and what intensity of blast is required for different purposes. It is proper to remark that the discharges may be found about a third too great in practice, on account of the convergency of the stream of air. This table extends beyond the limits of machines in common use, as very few blast furnaces have a force exceeding that required to support 60 inches of water.
23. The value of inquiries regarding the velocity and force of the wind, both in its application to windmills and sailing vessels, will be manifest from the following demonstrable facts: 1. If the force of the wind be capable of producing a degree of velocity in a ship greater than $\frac{1}{3}$ of its own velocity, the ship may run swifter upon an oblique course than when she sails directly before the wind. 2. The velocity of the sails of a windmill may be such that at their extremity it may be greater than that of the wind, and thus injuriously operate against the motion of the sails.

CHAP. III.

WATER POWER.

24. We agree with Sir John Leslie in saying that water is the readiest and most powerful agent that can be directed by human skill. The effect of the direct application of the force of water, whether at rest or in motion, is pretty accusately ascertained. This force is proportional to the square of the velo. city of the flow, and the velocity is proportional to
the square root of the height of its source. The perpendicular impulse or force of any unimpeded current against a plane surface is estimated, therefore, by the weight of a column of the fluid resting on that surface, and having the altitude due to the velocity.
25. The term Potamometer or Stream-measurer may be applied to any instrument employed to ascertain the velocity of a river or stream. An instrument of this kind, invented by M. Pitot, consists of a tube of glass bent at right angles, having the shorter branch formed into a funnel shape at the mouth, to receive the direct impulse of the stream, and the longer branch raised vertically to exhibit the elevation of the water in the tube which corresponds to its velocity. This elevation is measured by a graduated scale, reckoned upwards from the surface of the stream. The scale is graduated by the following rule:-To find the height due to a given velocity, square the velocity in feet per second, and divide by 64, the quotient will be the required height in feet. On this principle, the divisions of the scale of the Potamometer for miles, wonld be numbered at the following heights above the surface in inches:-

Divisions,	1	2	3	4	5	6	7	8	9
Heights,	4	16	36	64	10	$14^{\prime} 5$	19^{7}	$25^{\prime} 8$	327

Few rivers would require the glass tube to rise higher than 6 feet above the surface of the stream. A similar iustrument, made partly of tin, and cemented to a tube of glass, might be introduced into a ship or steam-boat, for measuring the ship's way at sea,* or for ascertaining the velocity of the

[^3]steam-boat. If introduced into the cabin, the passengers could tell, by consulting the scale, the rate per hour at which the vessel was sailing, and consequently, how soon they were likely to reach port.
26. The lateral or rather collateral draught of water Is cupable of producing very splendid effects, without the aid of machinery. When a stream is carried through a reservoir or pool of staguant water, nt a lower level, it has the effect of putting the whole mass in motion ; causing a great part of it to mix with the current, and thus effecting its escape. In this way, Venturi took advantage of the rapidity and lateral draught of a millrace to drain a marsh situated considerably below the stream, near the city of Modena.
27. Definitions. The transverse section of a river or stream is the plane surface that wonld be formed by cutting it vertically and perpendicularly to the direction of the current, supposing it for an instant to become solid. The mean hydraulic depth is the depth that a river would have if it flowed in a new channel, whose sides were vertical, and whose bottom was flat, and equal in breadth to the bottom and sides of its real channel. Tbis depth is found by dividing the area of the transverse section by the breadth of the bottom of the new channel. The declivity of a river is the rate of its fall or descent in a given distance, and is generally reckoned in inches or feet per mile. The velocity of the water in a river is most rapid in the middle of ${ }^{-}$ the upper surface of the stream, and it gradually diminishes towards the bottom and the sides of the channel. The mean velocity is the central velocity of the transverse section.
28. Sir John Lestie has given a very simple formula for finding the mean or central velocity of a river or water-course; and he states that it is quite conformable to actual observation.* Rule:-Multiply the mean hydraulic depth of a river by the declivity, both in feet, and extract the square root of the product ; the result diminished by ${ }_{1}^{1} 5$ part, will be the mean velocity of the river in miles per hour. Thus, we ascertain the rate of the majestic roll of the sacred river of the Hindoos, which has only a fall of 4 inches per mile, and a mean hydraulic depth of 30 fect, to be only about 3 miles an hour. The sivelling tide of the inighty Amazon, or Maranon, for the space of 600 miles before it discharges its flood into the deep, has only a fall of $10 \frac{1}{2}$ feet, \dagger which is about $\frac{1}{6}$ of an inch per mile; yet, reckoning its mean hydraulic depth for that space, at 100 fathoms, it must flow into the ocean with scarcely more than the same velocity as the Ganges. For the space of 600 miles from the embouchure of this great river, the tides of the Atlantic silently oppose its lazy flow; but above this point, the dechivity is about 6 inches per mile, and the mean hydraulic depth perhaps about 70 fathoms; hence, the velocity of its waters must be between 14 and 15 miles per hour, surpassing that of our swiftest steam vessels. At this point, therefore, the opposition is dreadfully increased, and the conflict of the water is tremendous; the action of this enormous Hy draulic Ram of nature produces such a revulsion in the waters of the Maranon, that waves, rising sometimes to the height of 180 feet, roll back upon
> * Natural Philosophy, p. 423.
> \dagger Murray's Encyclopaedia of Geugraphy, art, 883,
the rapid stream with the noise of a cataract, overwhelming all the banks of the Orellavic region. This phenomenon, justly ealled the bore, or by the Indians, pororoca, must for ever impede the useful navigation of this king of rivers.
29. The force of water, impinging directly against a plane surface, is found by the following rule :-Multiply the area of the surface in feet by the square of the velocity in feet per second, the product diminished by $\frac{-1}{5}$ part will be the force required in lbs. nearly. Thus, for the following velocities iu feet per second, the forces in lbs, on a square foot will be:-

$\begin{array}{llllcclccc}\text { Velocities, } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \text { Forces, } & 1 & 4 & 9 & 15 \frac{1}{2} & 24 \frac{3}{8} & 35 & 48 \frac{3}{4} & 62 \frac{1}{2} & 79\end{array}$
When the velocity is given in miles per hour the rule is: Multiply the area of the surface in feet, by the square of the velocity, and double the product increased by ${ }^{3} \mathrm{o}$ part, will be the force requircd in lbs. nearly. Thus for the following velucities in miles per liour, the forces in lbs. on a square foot will be:

Velocities, 1428
 When the water impinges obliquely against a plane surface, the forces obtained by the above rules must be multiplied by the square of the sine of the angle of incidence, as in the case of wind; these results must be again corrected by some function of the angle of incidence, so as to make them correspond with observation. This function, however, has not been hitherto accurately determined.
30. The Effective Power of a Stream as avallable for driving machinery is found by the following rule : Multiply the force due to the velocity and the
area of the transverse section, by the velocity per minute, and divide the product by the estimate of a horse's power, the quotient will be the effeetive power required.* Thus, the effective power of a mill-race 3 feet broad and 2 feet deep, running at the rate of 4 miles an hour, would be equivalent to that of nearly 13 horscs. For, by art. 29, the force on a square foot due to the velocity is 33.6 lbs ; hence the whole force of the stream is $3 \times 2 \times 33 \cdot 6=$ 201.6 lbs ; this multiplied by the velocity, 352 feet per minute, gives $70963 \cdot 2 \mathrm{lbs}$. per minute, for the effective power. Now, a horse's power at the given velocity is 22528 lbs. per minute, by art. 12 ; but at work a horse could not continue more than six hours a-day, whereas the action of the stream is incessant; the horse's power must therefore be taken at $\frac{1}{4}$ of this, or 5632 lbs ; consequently $70963 \div 5632=12 \cdot 6$ horse's power.

The comparison with human labour is still more striking: a man's power at the same velocity is only 2816 lbs . per minute, or $\frac{1}{8}$ of a horse's power ; that is, a horse's power is eqnivalent to that of 8 men; and $12.6 \times 8=100.8$; hence, it appears that the effective power of such a stream, is equal to the ordinary labour of 100 men. If the stream had a fall of $26 \frac{2}{3}$ feet, its effective power would then be increased to 50 times this quantity. Foz the height due to the velocity is 6.4 inches, by art. 25 ; and the velocity, and consequently the power, being proportional to the fall, we have $320 \div 6.4=50$ times. The immense acquisition of power that might be thus gained from

[^4]the numerous streains of this description which could be easily collected over the face of the country, renders the subject one of great importance to the mechanic and engineer.
31. Definitions.] When water issues from a small orifice in the bottom or side of a very large vessel or reservoir, it almost instantly acquires and maintains the velocity which a heavy body would acquire by falling from the horizontal surface of the stagnant water.* This velocity is called its Natural Velocity. If the area of the orifice be multiplied by this velocity, the product will be the quantity of water discharged. This quantity is called the Natural Discharge. In like manner, the mean velocity of a rumning stream, may be called its natural velocity; and the product of this velocity by the area of its transverse section, its natural discharge. The leight due to the velocity of water issuing from a vessel or reservoir is called the head of water. When water or any fluid issues through a hole in a thin plate, the stream is contracted at a small distance from the hole; at the place of this contraction the flud acquires its natural velocity; but as the area of the orifice is larger than the area of the transverse section of the jet at the place of contraction, the natural discharge will be diminished in proportion to the contraction of the jet. This contraction takes place in every case where water is confined and made to pass through narrow apertures, such as in pipes, canals, and sluices, as well as holes in the sides or bottom of vessels or reservoirs; it occurs also in dams or weirs furnished with a wasteboard, and in bars in streams or rivers.

* See Robinson's Mechanical Philosophy, Vol. ii. p. 410.

32. The Natural Discharge of water in cubic feet per second Howing frem any stream or reservoir is found thus : Multiphy the area of the transverse section of the stream, by its mean velocity; or, the area of the orifice by the velocity due to the head of water ; and the product, in either case, will be the number of cubic feet discharged per second. The Effective or Real Discharge will be always less than the natural discharge in proportion to the contraction or obstruction of the stream. Conscquently, when the actual velocity of the discharge is given, the height or head necessary to produce this velocity will be found by squaring the velocity and dividing it by 64 in the case of the natural discharge, or by other divisors according to the nature of the orifice which produces the contraction of the stream. The following table contains the proportions of the Natural Discharge which constitute the Real or Effective Discharge in different circumstances, and the corresponding divisors for finding the height or head of water due to the velocity of the actual discharge.

No.	Wature of the Ajerture or Fhow.	Promer	nivi-
	tural Discharge or		
2	Flow over a bar or heep,	${ }^{9} 97$	${ }_{60} 6$
4	Flow over a weir or dam,	96	58 59
5	Tube two datancters long,	81	42
${ }_{7}^{6}$	Tube projecting inwards and full flow,.: Aperture in a thin plate,l.t.	${ }^{69}$	${ }^{29.6}$
7	Aperture in a thin plate,	$\begin{aligned} & 62 \\ & .31 \end{aligned}$	$2+6$ 16.6

The proportion of the discharge in No. 4 of this table depends much on the finish of the tube,
varying from 92 to 98 ; the tabular proportion answers for wide openings of which the bottom is on a level with the reservoir, for sluices with walls in a line with the orifice, and for bridges with pointed piers. For narrow openings of which the bottom is on a level with that of the reservoir, for smaller openings in a sluice with side walls, and for abrupt projections and square piers of bridges, : 86 is the proportion, and $47 \cdot 3$ the divisor. For openings in sluices without side walls, 635 is the proportion, and 25 the divisor. In the case of a notch or rectangular slit in the side of a vessel or reservoir, the discharge will be $\frac{2}{3}$ of that due to an equal orifice placed horizontally at the whole depth.
33. The following table exhibits the natural discharges per minute and the velocities per second due to different heights or heads of water, supposing the area of the transverse section of the stream or the area of the orifice, to be 1 square foot.

Heighte	Veloeltioe	Natural Diseharges.	
feet.	fret.	cubio feet.	Imp. gallone.
1	$8 \cdot 000$	480	3000
2	$11 \cdot 314$	679	4244
3	$13 \cdot 856$	831	5199
4	$16 \cdot 000$	960	6000
5	$17 \cdot 889$	1073	6706
6	$19 \cdot 596$	1176	7350
7	$21 \cdot 166$	1270	7937
8	$22 \cdot 627$	1358	8487
9	$24 \cdot 000$	1440	9000
10	$25 \cdot 298$	1518	9487

The discharges in Imperial Gallons are given in
round numbers by assuming 16 of a cubic font, as the capacity of an imperial gallon, instead of $\cdot 16046$ of a cubic foot. The weight of water in lbs. will be found by multiplying the number of imperial gallons by 10. The Natural Discharge of the waters of the Ganges into the sea, will be nearly 31 millions of imperial gallons, or upwards of 15 thousand tons per second, supposing the velocity 3 miles per hour, the mean hydraulic depth 30 feet and the breadth corresponding to this depth $\frac{3}{4}$ of a mile.
34. The Effective Power of a Stream or Water Fall is found by the following rule: Multiply the effcctive discharge in cubic feet per minute by the height due to the velocity of the stream, or by the height of the fall, and this product again by $62 \frac{1}{2}$ lbs.; divide the result by 44000 , and the quotient is the amount of horse power equivalent to the force of the stream or fall. Thus, the effective discharge of the Regulating Basin attached to the Whin Hill Reservoir of the Shaws Water, above Greenoek, is according to the printed regulations, 1200 cubic feet of water per minute ; consequently, the power of a fall of 30 feet on the line of mills supplied by this water, is upward of 51 horse power ; for 1200×30 $\times 62 \frac{1}{2}=2250000 \mathrm{lbs}$; and $2250000 \div 44000=$ $51 \cdot 14$ nearly. The value of a horse power has been assumed here at the highest estinate in order to include every allowance for friction, waste of water, \&cc. in the application of water power to the impulsion of mill-wheels. That this rule coincides very nearly with practice is evident from the valuable experiments inade on this subject by Robert Thom, Esq. of Ascog, Bute, a gentleman whose
eminent skill in hydraulic engineering, is not sure passed in this or in any other country.
35. Mr. Thom estimates a discharge of 1200 oubic feet per minute on a fall of 30 feet as equal to a Boulton and Watt steam engine of 54 horse power.* For, by repeated experiments, he found that 1666 cubic feet of water on a fall of 20 feet was equal to an engine of 50 horse power ; whence, the following proportion :-

$$
\left\{\begin{array}{r}
1666 \frac{7}{3}: 1200 \\
20: 30
\end{array}\right\}:: 50: 54 \text { horse power. }
$$

Adopting Mr. Thom's estimate as the most corrcct, the power of a Water fall may therefore be easily Sound by proportion, or by adding $\frac{1}{2}$ part to the result found by the above rule.
36. Shaws Water. The achievements of Mr. Thom in the production and regulation of Water Power are so great as to deserve particular mention here ; more particularly as the system may be carried on to an indefinite extent in this country, to the immense advantage of the working population, the landed proprietors, and the whole mercantile community. The whole fall of the water from the Whin Hill Reservoir above Greenock to the level of the Clyde at high water is about 512 feet; there are at present two lines of Mills on this fall; the first, extending the whole length, and having sites for 19 mills each of about 27 fcet fall on an average ; the second, extending 368 fect and having sites for 13 mills each of about 28 feet on aul average. The Grand Reservoir situated at the back of the Shaws Hills, is capable of supplying, by means of the Shaws Water Aqueduct, which is $6 \frac{1}{2}$ miles * Sce "Brief Account of the Shaws Watcr Scheme," p. 61
long, 2400 cubic feet of water per minute; hence, if all the mills were in operation, the amount of the power employed would be at least equivalent to that of 2000 horses. The utility of such an immense power as this in the immediate vicinity of so flourishing a port as Greenock, is one that cannot be too highly estimated by a mercantile community ; and when the cheapness of the power as compared with that of steam is considered, its value is still more enhanced. The average rent of the water is £2 15 per horse power, and the average rent of the ground or feu-duty for erections, Scc., is only $\mathfrak{E} 7$ per acre! We are much mistaken, if 10 times, ay 20 times as much be not paid for steam-power iu Glasgow and its neighbourhood.
37. To show that the Shaws Water Works are capable of supplying this quantity of water and of power at all times aud seasons, throughout the year, it may be proper to state that the embankment of the great Reservoir is 60 feet high, that the water in it covers about threc hundred imperial acres, and that it contains nearly 285 millions of cubic feet of water; that along with the compensation and auxiliary reservoirs, it will contain above 310 millions of cubic feet of water, which will cover nearly 400 imperial acres, and that it is capable of supplying annually according to Mr. Thom's estimate, no less than 600 millions of cubic feet of water. The whole of the ground whose waters are drained into the Reservoirs and Aquednct, is nearly 5 thousand Imperial acres.
38. When "Loch Thom," which is the name of the Gratd Reservoir, was opened on the 16 th of April, 1827, a memorable day in the listory of

Greenock and of Scotland, by the chief Magistrate W. Leitch, Esq., who first raised the sluices, he sailed along the whole leng th of the aqueduct in the space of about 3 hours.* Taking the mean velocity of the stream, therefore, at $2 \frac{1}{3}$ miles per hour, the mean breadth of the aqueduct at 6 feet, and the mean depth of the water at 2 feet, it is evident that its regular discharge into the Whin Hill Reservoir is 2464 cubic feet per minute; for $2 \times 6 \times 205 \frac{1}{3}=$ 2464. The declivity of the aqueduct is about 5 feet per mile; hence, the mean bydraulic depth is $1 \frac{1}{5}$ feet; therefore, by the rule in art. 28 the mean velocity is 2.3 or nearly $2 \frac{1}{3}$ fect, a result that agrees remarkably well with observation, and confirms the accuracy of the preceding computation. The force of this stream previous to its arrival at the falls which render it so powerful, is barely equal to that of a single horse, on the lowest practical estimate. For the height due to the velocity is 183 of a foot, by the rule in art. 25 ; hence, $2464 \times 62 \frac{1}{2} \times \cdot 188$ $=28182$. Nothing demonstrates more plainly than this, the immense utility of falls, and the advantage of collecting water in elevated situations.
39. That rain could easily be collected to a very great extent, not only in this country but in almost every country in the world, for the purpose of driving machinery, will be rendered evident from the following considerations. Sir John Leslie estimates the quantity of moisture exhaled in a year over the surface of the globe, as sufficient to form a shell or covering of 5 feet deep $; \dagger$ hence, taking the mean neight of the atmosphere at 18 thousand feet, he
> * See Weir's History of Greenock, p. 104. + Natural Philosophy, p. 429.
finds that the power exerted in the formation of clouds, exceeds by two hundred thousand times the aecumulated toil of the whole population of the earth. He then states that if half of the falls in the rivers and streams of the habitable parts of the globe were detained at an elevation of 600 feet, there would be drawn from these sources a power cleven times greater than the whole amount of human labour. He next shows that taking the surface of this island at upwards of 67 thousand square miles, and reckoning that only 3 inches of the rain that falls annually are caught at an elevation of 100 feet, the power it would produce is equivalent to that of 6708 steam-engines of 20 horse power, or not inferior to the ordinary labour of the whole of the male population.
40. There are many natural situations in this island, however, far surpassing the above estimate in point of elevation and supply, and consequeutly of power. We have seen that the Shaws Water at Greenock alone furnishes a power of 2000 horses, and we believe that this power could easily be doubled. The water of Leven which issues from a lake of the same name in Fifeshire, has been calculated as capable of producing by means of a fall of 300 feet, a power equivalent to that of 2000 horses; and the water of Leith, according to a Report by Professors Leslie and Jamieson, by means of a fall of 884 feet, is capable of furnishing a power of even more than this, being equivalent to that of 106 steam engines of 20 horse power. These are a few examples in our own neighbourhood; but it is manifest that they might be multiplied to a great extent, by making a proper hydraulic survey of the island.
41. In estimating the power of the ocean itself, Sir John Leslie states that the force of the moon and sun in raising the tides is only about $\frac{1}{80}$ of the action of the atmosphere in the formation of clouds; and that therefore it is still two thousand five hundred times greater than the labour of the whole population of the globe. But the rise and fall of the tide along our shores is capable of driving numerous mills. He finds that estimating the circuit of this island at 1750 miles, there might be formed no fewer than 14 thousand mills, by drawing a sea-wall or dam 66 feet from the shore; thus a power would be created equivalent to that of 350 thousand men, or 50 thousand horses.
42. River or Tide Mills.] The float hoards of river or tide mills are not impelled by the whliole velocity of the stream or tide, but only by its excess above that of the wheel, which is technically called undershot. The pressure which turns the wheel is found thus: Square the difference between the velocity of the cuarent and the velocity of the middle of the float; multiply this square by twice the area of the surface immerscd in the water, and the product wilt be the force required in lbs. Such is the theoretical rule, but in practice, the results vary considerably according to circumstances. In general, a great loss of power is occasioned by the accumulation of dead water, that is, the water which after impinging against a float-board, remains nearly stagmant, and consequently impedes the advance of the next float-board. Friction, the obliquity of impulse, and confinement of the stream to a narrow channel, all contribute to render the practical effect greatly

* Natural Philosophy, p, 431.
different from the theoretical. The maximum effect is produced according to theory when the velocity of the middle of the float is $\frac{1}{3}$ of the velocity of the current; that is when the power communicated to the wheel is $\frac{4}{27}$ of the whole power of the stream, (art. 7). In ordinary cases, it would be more advantageous to make the float-hoards turn slower, and to increase the communicated velocity afterwards, by a train of internal machinery. By this means, the whole velucity and impulse of the current might be rendered available. When the floatboards move in a circular sweep close fitted to them, or in general, when the stream cannot escape without acquiring the same velocity as the wheel, the effect is a maximum when the velocity of the wheel is $\frac{1}{2}$ of the velocity of the current, being then equal to $\frac{1}{4}$ of the moving power." Hence, the utility of contining the stream to a narrow channel is manifest.

43. Overshot Wheels.] This is the technical term employed in the case of mills driven hy a fall of water discharged on or near the top of the wheel. For the mechanical effect of an overshot wheel in the most favourable circumstances, Dr. Gregory has given a very simple algebraical expression from which the following rule is derived by a slight modification: Raise the radius of the wheel to the cube or third power, and extract the square root of this power; multiply this root by the area of the transverse section of the stream that supplies the buckets; divide the product by $6 \cdot 5$, and the quotient will be the mechanical effect in horse powers. According to this rule, the power of an overshot wheel of * Gregory's Mathematics for Practical Men, p. 318 .

30 feet in diameter with a stream of 6 square feet in area, falling on it, is equivalent to 54 horses' power; for $15 \times 15 \times 15=3375$, and $\vee 3375=$ 58.095 ; now $58.095 \times 6=348.57$ and $348.57 \div 6.5$ $=53.6$ or 54 nearly. This rule gives a result almost the same as that of Mr. Thom's experiments, see art. 35 . The maxims for the practical construction of the different kinds of mill-wheels, and for estimating their comparative mechanical effects, according to the experiments of Smeaton, Bossut, and others, will be found in vol. 51, Philosophical Transactions, vol. Ii, Bossut's Hydrodynamique, Buchanan's Essays on Mill-work, and Banks on Mills.

CHAP. IV.

STEAM-FOWER,

44. The elastic force of steam is one of the most powerful prime-movers of machinery at present known. Water under the ordinary pressure of the atmosphere in this country, generates steam at the temperature of 212° Fahrenheit's thermometer; and the temperature continues at this point, whatever quantity of heat be applied, till the water bo entirely converted into steam, its elastic force at this temperature being equivalent to a force of about 15 lbs . on the square inch of the resisting surface, that is, an exact balance to the pressure of the atmosphere. Under this pressure, a cubic inch of water produces about a cubic foot, or nearly 1728 cubic iuches of steam. If the pressure of the atmosphere be diminished or removed, steam will
be generated at a lower temperature : thus, in a vacuum water boils at 70° instead of 212°. The boiling point varies by $1 \cdot 76$ of a degree for every inch of variation in the atmospheric pressure, botiveen the limits of 26 inches, and 31 iuches of the barometer, as noted in the following tablet of boiling points corresponding to the height of the mercury in the barometer.

Barometer,	26	27	28	29	30	31^{-}
Thermometer,	20491	$206^{\circ} 67$	20843	210^{-19}	212	21376

On the other hand, if the atmospheric pressure be increased or supplanted by a greater force, water will not boil at the ordinary temperature ; thus in A diving bell immersed in water 68 feet below the surface, the boiling point is raised to 272° instead of 212°. Dr. Gregory says that when pressed by a column of mercury 5 inches in height, water does not boil till heated to 217°; each inch of mercury producing by its pressure, a rise of about 1° in the thermometer.
45. Force of Steam.] The determination of the elastic force of steam at different degrees of temperature being a subject of the greatest importance to the practical engineer, it has undergone much investigation by experimental philosophers, such as Watt, Southerw, Creighten, Young and Tredgold. The following rule given by Mr. Tredgold, has the merit of simplicity when compared with others, and of near colucidence with the results of actual experiment. To find the elastic force of vapour of water or of steam in inches of mercury of the barometer, at \approx given temperature of Falirenheit's thermometer :Adil 100 to the given tompcrature, and divide the
sum by 177; raise the quotient to the sixth power, and it will be the force required. Thus, if the temperature of steam be raised to 3070 , its force in inches of mercury will be 148 nearly; for $307+100=407$; and $407 \div 177=2 \cdot 3$, the sixth power of which is about 148 ; consequently, steam at 307° has an elastic force of nearly 5 atmospheres, for $148 \div 30=5$ nearly. Among the tables at the end of this book, will be found a table showing the elastic force of the vapour of water from 32° to 2122°, according to the experiments of Mr. Dalton, and of steam from 212° to 320°, according to those of Mr. Taylor. The results given in this table may be compared with the corresponding results given by the above rule. As this rule and table apply only when pure water is used, corrections must be employed to determine the elastic force of steam generated from salt water. The proportion of salt in the water of a boiler supplied with sea water, will continue to increase during the evaporation, till the water becomes saturated and contains $\frac{12}{3} \frac{2}{3}$ of salt ; the elastic force of the steam at the temperature of 307° will then be about 113 inches which is less by 35 inches, than that of the steam of pure water at the same temperature. To facilitate the computation of the force of steam generated from salt water of different degrees of sal tness at different temperatures, the following table of the boiling temperatures and constant numbers to be used as divisors instead of 177 in the above rule, is here subjoined. The specific gravity of the water will iu all cases determine the proportion of salt it contains.

Proportions of Salt.	Boiling Points	Divisors.
Common water, 0	212°	$177 \cdot 0$
Sea water, $\frac{1}{33}$	$213 \cdot 2$	$177 \cdot 6$
Boiler water ${ }^{\frac{2}{3} 5}$	214.4	178.3
do. $\frac{3}{35}$	$215 \cdot 5$	179.0
do. $\frac{4}{35}$	216.7	$179 \cdot 7$
do. ${ }^{\frac{5}{3}}$	$217 \cdot 9$	180.4
do. $\frac{1}{\text { a }}$,	219.0	181.0
do. $\frac{7}{35}$	$220 \cdot 2$	181.6
do. ${ }^{\frac{4}{3}}$	221.4	182.3
do. $\frac{9}{33}$	$222 \cdot 5$	183.0
do. $\frac{1}{\frac{1}{3}}$	$223 \cdot 7$	$183 \cdot 6$
do. ${ }^{\frac{11}{83}}$	$224 \cdot 9$	$184 \cdot 3$
Saturated water, $\frac{1}{3} \frac{2}{3}$	226.0	185.0

46. Force of Steam in Atmospheres.] When steam by continual accessions of heat acquires an elastic force capable of supporting a column of 60 inches of mercury, or twice the height of the barometric column, it is then said to possess a force of 2 atmospheres; and so on, in proportion to the height of the column of mercury it can support. By the experiments of Taylor, the force of steam was determined as far as 180 inches of mercury, or a pressure cquivalent to 6 atmospheres. Beyond this point, the determination of the force of steam is due to the labours of MM. Dulong and Arago, members of a committee appointed to investigate the sulject, by the Acaderny of Sciences at Paris. The temperatures and pressures were experimentally ascertained up to 24 or 25 atmosplieres and thence extended to 50 atmospheres by calcula-
tion.* The following rule is derived from the formula elicited by tbese philosophers from their experiments on the subject. To find the elasticity of steam in atmospheres, at very high temperatures :Subtract 212° from the given temperature, multiply the remainder by '003974 and add 1 to the product; then, raise the sum to the 5th power, and it will give the elastic force required. As this operation is best performed by logarithms, the rule may be thus expressed: Subtract 212° from the given temperature, to the logarithm of the remainder, add the constant logarithm $\overline{3} .599228$; tben to the number indicated by the result, add 1 , and multiply the logarithm of the sum by 5 ; the product will be the logarithm of the elasticity in atmospheres. \dagger Thus, to find the elasticity of steam at 307°, the operation is as follows :

* Galloway's History of the Steam Enginc, p. 885.
+ Professor Robinson says, that "tables of common logarithms are, or should be, in the hands of every person who is much engaged in mechanical calculations" A small pocket volume of Logarithmic Tables, entitled "The Practical Ma_ thematician's Pocket Guide, "may be had of the publisher of this work.
equal to the pressure of 5 atmospheres, as formerly found by Tredgold's rule, art. 45 . The following table is the result of the experiments and calculations above-mentioned. The columns marked At. contain the elasticity or force of steam in atmospheres, and the columns marked Temp. on the right, contain the corresponding temperatures in degrees of Fabrenheit's thermometer.

At	Temp.	At.	Teman.	At.	Temp.	At.	Temar.	At.	Ternp.
1	2120.00	7	8810 \%o	18	41160 St_{2}	20	$45 \% \cdot 16$	42	4910-76
$11 / 5$	2730	7/12	$385 \cdot 86$	19	41896	\$1	$460 \cdot 10$	48	494.27
2	250 90	8	$511-04$ 850 858	90 9	418 402 4020	浱	$40{ }^{4} 964$	14	[496.78
9	$\frac{243818}{273} 18$	10		92	492 429 408	S3	460 44 44 78	45	$409-1$ 5111
31/4	255	11	267 -th	28	43140	25	479 -78	42	$503-85$
4	23972	19	274.90	24	4.85	34	475	49	500-16
4 4	30128	13	± 850	25	439	27	47816	49	50840
	308 314	15	256	$\frac{27}{97}$	$443 \cdot 16$ 446	5	461-24	$\begin{aligned} & 50 \\ & 51 \end{aligned}$	519-60
6	\$00 20	16	30848	88	450	40	48650	59	514-82
61/2	896 -46	17	40888	20	45382	41	$489 \cdot 21$	63	$817 \cdot 08$

47. At very high temperatures, there is a great discrepancy between the results obtained by the French and English experimenters. According to Mr. Perkins, the force of steam at 4190 F. is 35 atmospheres, whereas, by the above experiments, it is only 20 atmospheres. Mr. Perkins in his specification of his high-pressure engine, states also that If the steam-generator be made strong enough, to withstand $60,000 \mathrm{lbs}$. load on the escape valve, the water would not boil although it would exert an expansive force equal to $56,000 \mathrm{lbs}$. on the square inch, and be at about 1170° of heat or cherry red; and Mr. Galloway asserts that "recent experiments have proved that steam when heated to 1170° will act with a force of $56,000 \mathrm{lbs}$. on the square inch,"
or about 4000 atmospheres. It is natural for the advocates of high-pressure steam to magnify the power of the agent which they wish to employ, but the accuracy of these statements is, at least, questionable. The force of steam at 1170°, when calculated by Tredgold's rule, is no doubt, even greater than this, being upwards of 4500 atmospheres; but when calculated by the French rule, it is only abous 2567 atmospheres, or nearly 38000 lbs., instead of 56000 lbs , on the square inch. Recent experiments, therefore, instead of confirming Mr. Perkins' statement, have rather lowered it considerably. The fact is, the law of the elastic force of steam varies considerably between high and low temperatures; Mr. Tredgold's rule being pretty correct as far as 6 atmospheres, and the French rule being more correct beyond this pressure, at least as far as 50 atmospheres.
48. Expansion of Steam.] Like air and other elastic fluids, steam loses its elastic force or pressure directly in proportion as it is allowed to expand. Thus, if it be allowed to expand into twice or thrice its volume, it will have only a half or a third of its original pressure, supposing that its temperature is preserved while it expands. Hence, it follows that the expansion of steam is exactly proportional to its elastic force expressed in atmospheres, according to the preceding article. The following table exhibits the results of this law, at different temperatures with their corresponding pressures and expansions. The first column marked Temperature, contains the degrees of heat of Falirenheit's thermometer at which the steam must be maintained, the second, marked Pressure, contains the number
of pounds per square inch with which the safetyvalve must be loaded to resist its escape; and tho third, marked Expansion, contains the number of times its volume, to which the steam would expand if relieved from the pressure, and still maintain an elasticity equivalent to the pressure of the atmusphere.

Temperature.	Pressure.	Expansion.
$2120 \cdot 00$	0	
250	-52	15
275	-18	30
293	-72	45
308	-84	60
320	-36	75
331	-70	90
341	-96	105
350	-78	120
358	$\cdot 88$	135
367	-34	150
374	$\cdot 00$	165
	4	

49. A table similar to the preceding might be constructed from the Table of the experiments of Dalton and Taylor referred to in art. 45, and it might be extended to a greater length by the table in art. 46 or by the rules in both articles. Thus, To determine the pressure on the safety-valve, subtract 30 from the elastic force in inches of mercury, and half the remainder will be the pressure required in lbs. Or, subtract unity from the elastic force in atmospheres, and multiply the remainder by 15 , the product will be the pressure required in lbs. on the square inch.

Either of these rules will give results corresponding to these in the preceding table, and probably superior in point of accuracy. The following table extracted from "Brunton's Compendium," is one of the same description.

Temp.	Pr.	Temp.	Pr.	Temp	Pr,	Temp.	Pr.	Temp.	Pr
216°	Ibs.	252°	$\frac{16 s}{15}$	275°	$\begin{gathered} \frac{\mathrm{bx}}{20} \\ 20 \end{gathered}$	2930	Ibs,	307	578
919	2	254	16	97	30	2944	44	308	88
272	3	256	17	278	31	295	45	309	59
295	4	258	18	279	32	246	46	310	10
220	5	200	19	281	33	207	47	311	61
939	6	261	90	288	34	298	48	312	09
234	7	263	21	283	35	209	49	313	63
233	8	265	28	285	33	300	50	514	65
239	9	267	88	${ }_{28}^{286}$	37	301	51	315	66
241	10	268	24	287	38	302	52	316	67
24	11	${ }^{271}$	25	288	39	303	53	317	68
216	12	271	26	289	40	304	54	318	69
248	13		27				55	319	70
250	14	274	128	291	42	800	56	320	71

50. Mr. Tredgold has given the following rule for finding the volume of a cubic foot of water when converted into steam of a given elastic force and temperature: Multiply the sum of the given temperature in degrees and 459 , by $76 \cdot 5$, and divide the product by the force of the steam in inches of mercury; the quotient will be the number of cubic feet accupied by the steam of one cubic foot of water. From this, the weight of a cubic foot of steam, and its specific gravity at different temperatures, may easily be found by proportion. The velocity with which the steam rushes into a vacuum is found byart. 20 , modified by art. 32. Thus, to find the volume of a cubic foot of water when converted into steam of atmospheric pressure (at 30 inches, and temperature 212°, we have $212+459=671$; then
$671 \times 76.50=51381 \cdot 5 ;$ and $51381 \cdot 5 \div 30=1711$ cubic feet. Again, to find the weight of a cubic foot of this steam, we have $1711: 1:: 62 \cdot 3 \mathrm{lbs}$ or 436100 grains: $254 \cdot 8$ grains; and, to find its specific gravity, air being 1 , we have 1.2×437.5 grains, or $525: 254 \cdot 8:: 1: 485$; where we have taken the weight of a cubic foot of water at 62.3 lbs. and the weight of a cubic foot of air I 2 ounces at the temperature of 60°.
51. To find the velocity of steam at 212^{0} rushing into a vacuam, we liave $1711 \times 34=58174$ feet, the height of an atmosphere of this fluid; then $8 \sqrt{58174}=1928$; and $1928 \times \cdot 8 \mathrm{I}=1562$ feet nearly; where the height of a column of water at 60° cquivalent to the atmospheric pressure is taken at 34 feet, and the contraction of the jet that of a tube two diameters long, its discharge being to the natural discharge nearly as 6.5 to 8 .
52. Latent heat of steam. The remarkable fact established by undoubted experiment, that the sums of the latent and sensible heats of steam is a constant quantity, leads to several valuable practical results. It follows from this law ; 1. That the same quantity of heat is necessary to convert a given weight of water into steam, at whatever temperature, or under whatever pressure, the water may be boiled; 2. That in the steam-engine, equal weights of high-pressure and low-pressure steam are produced by the same consumption of fuel ; and 8. That, in general, the consumption of fuel is proportional to the quantity of water converted into stcam, whatever may he the pressure of the steam. It may likewise be remarked that the variation of the density or specific gravity of stean is only
strictly proportional to its pressure or elasticity, when the temperatures are the same; and no part of steam can be reduced to the liquid state by mechanical force or compression alone, without diminishing the sum of the latent and sensible heats.

It has been pretty accurately ascertained that the Iatent beat of steam generated under the mean pressure of the atmosphere is 1000°, its sensible heat being 212°; the sum of these is 1212°, a constant quantity for all temperatures and pressures. Thus, between 32° and 1212°, the sum of the latent and sensible heat of steam is 1180°; for, under the ordinary atmospheric pressure, the first 180° of heat would raise water at 32° to 212° or the boiling point; and the next 1000° of heat, would convert the water into steam; but this accession of heat not being indicated by the thermometer, is termed latent. Herice, to find the latent heat of steam, Subtract its sensible heat, expressed in degrees of Fahrenheit, from 1212°, and the remainder will be its latent heat. Thus the latent lieat of steam at 500°, is 712°.
53. On the preceding principle, it will be easy to fiud the beat requisite to convert water of any given temperature into vapour or steam of any required temperature: thus, $A d d 1000^{\circ}$ to the temperature of the vapour or steam, and from the sum, subtract the temperature of the water, the remainder will be the heat of conversion required. Thus, the heat required to convert water at 52° into steam at 220°, the usual temperature of lowpressure steam, is $1000+220-52=1168^{\circ}$. Among the tables at the end of this work, there is
an abstract of Mr. Tredgold's Table of the "Properties of Steam" in which will be found many examples of the application of the principles and rules contained in the ten preceding articles.
54. Steam Engine. The great change of volume which steam undergoes when it is condensed by being suddenly cooled, renders it a most efficient means of producing a vacuum, without the application of mechanical force. This is in fact the principle of the construction of all condensing steam engines whether operating by atmospheric pressure or by steam-pressure, with single or double action. Since a cubic inch of water expands into a cubic foot of steam at the boiling temperature, it is evident that, conversely, steam when suddenly condensed by being cooled to a low temperature will be reduced to about one 1700th part of its bulk; and if it be confined in an air-tight vessel, a vacuum will be formed in proportion to the quantity of steam condensed. Again, as steam at the temperature of 212° balances the pressure of the atmosphere, it is evident that, conversely, when it is condensed, this pressure will operate with all its force against the sides of the vessel in which the vacuum is formed. This force is well known to be equivalent to about 15 lbs. on the square inch; but from the quantity of uncondensed steam, the friction of the parts, and other sources of resistance in steam engines, it is generally reduced about one-half in its effcctive operation as a moving power.
55. Low Pressure Engines. The most improved and most generally used form of the steam engine is the Double Acting Engine of Watt. The moving power in this machine is rendered operative by
means of a piston placed in a cylinder, closed at top and bottom, in which it moves steam-tight. The piston is connected with the end of the working beam by a rod moving in an air-tight collar or stuffing-box in one end of the cylinder. The beam is supported on its axis, and has a connecting rod to convey motion to the crank and shaft. When the engine is to be put in motion, the atmospheric air and other gases are expelled from the cylinder and tbe tubes wbicb communicate between it and the boiler, by steam, which is allowed to pass freely through them, and escape through a valve or cock provided for the purpose, until all the air be blown out of the engine. The cock is then closed, and pure steam fills every part of the engine. A vessel or chamber called a condenser, which is maintained at a low temperature, by being immersed in cold water, is made to communicate with both ends of the cylinder by means of proper tubes and valves worked by the engine. Wben the piston is required to descend, the communication between this chamber and the bottom of the cylinder is opened, while a communication is at the same time opened between the boiler and the top of the cylinder. The steam whicb fills the cylinder below the piston rusbes towards the condenser by its elastic force, and is there immediately converted into water by the cold medium with which it is surrounded, a jet of water being allowed to play into the condenser. The space of the cylinder below the piston is thus rendered a vacuum; instantly the steam rushing from the boiler on the top of the piston forces it downwards, till it reaches the bottom of the cylinder. The communication between the boiler and the top
of the cylinder is now closed, and a communication opened between the boiler and the bottom of the cylinder; and at the same time the communication between the condenser and the bottom of the cylinder is closed, and a communication is opened between the condenser and the top of the cylinder. Under these circumstances, the steam above the piston rushes by its elastic force towards the condensor as before, where it is immediately condensed, and tha space of the cylinder above the piston is made a vacuum. The steam from the boiler then instantly rushes into the cylinder below the piston, and forces it upwards to the top of the cylinder. In this manner, the alternate motion of the piston upwards and downwards is continued, this motion is communicated to the beam by the piston-rod, and from the beam to the crank by the connecting rod. All the communications are effected by valves which are opened and closed by apparatus attached either to the working beam or the crank shaft. The air pump which clears the condenser of air and water, the cold water pump which supplies the cistern, and the hot water pump which supplies the boiler, are all worked by connecting rods attached to the working beam.
56. Single Acting Engine. This engine which is also the invention of Watt, differs from the preceding in this principal respect, that the force of steam is employed only to produce the downward motion of the piston the reverse motion being effected by a counter-weight attached to the other end of the working beam. When the piston by the operation of the moving power reaches the bottom of the cylinder, a communication is opened between tho
boiler and the bottom of the cylinder, and steam is admitted below the piston as well as above: the communication between the cylinder and condenser being then closed, the piston is raised by the counterweight; but as soon as it reaches the top of the cylinder, the communication between the cylinder and condenser is opened, the steam is condensed, the piston descends, and the operation is continued as above described. The other parts of this engine are similar to those of the double acting engine.
57. Aimospheric Engine. The principal difference between an atmospheric engine with a condenser, and a single acting steam engine, consists in the steam being admitted both into and out of the cylinder by communications at the bottom, and the descent of the piston is effected by the pressure of the atmosphere on its upper surface, the cylinder being open at the top. In the atmospheric engine, as it existed before Watt's invention of the separate condenser, the jet of cold water was thrown into the cylinder itself, at every stroke of the piston; consequently, the cylinder was alternately heated and cooled at each stroke, at a great expense of fuel and cold water, and a corresponding loss of steam. It is only by taking a retrospective glance at the early history and progress of the steam-engine towards its present improved state, that we can duly appreciate the gratitude we owe to the genius who so greatly increased its power and facility of operation, as to create a new era in the annals of his country, and in the history of the world.
58. Proportion of the Parts of a Steam Engine. In all kinds of steam engines, the length of the cylinder should be about twice its diameter, so that
the steam may be bounded by the least possible quantity of surface. According to Tredgold, the velocity of the piston in feet per minute should be 98 times the square root of the length of the stroke, in an engine for raising water ; and 103 times that length, in one for driving machinery. Also, the area of a transverse section of the steam passages, should be the 4800 th part of the product of the velocity of the piston in feet per minute, and the area (in feet) of a section of the cylinder parallel to its base.
59. In the common atmospheric engine, if this area be multiplied by half the velocity, and the product, by 1.23 added to 1.4 divided by the diameter, the result divided by 1480 gives the number of cubic feet of water required for steam per minute. If the difference between 1220° and the temperature of condensation, be divided by the difference between that temperature and the temperature of the cold water, the quotient will be the number of times the quantity of water required for injection must exceed that required for steam, which is generally about twelve times. The aperture for injection must be such as to admit that quantity during the time of the stroke. The head of water should be about 3 times the height of the cylinder. When the jet apertures are square, the aren of a section should be the 850th part of the area of a section of the cylinder. The diameter of the conducting pipe should be about 40 times that of the jet.
60. In the atmospheric engine with a separate condenser, the capacity of the air-pump should be oue 14th part of that of the cylinder, or making
the stroke of the air-pump half that of the steam piston, its diameter should be $\frac{3}{8}$ of the diameter of the cylinder. If the area of a section of the cylinder be multiplied by half the velocity, and to the product $\frac{1}{5}$ part be added, for loss by cooling, \&\&c. the sum divided by 1480 , gives the quantity of water in cubic feet per minute required for the boiler ; and 24 times this quantity is necessary, for injection. The diameter of the injection aperture should be one 36 th part of the diameter of the cylinder, and that of the injection pipe one 9th part.
61. In a Single Acting engine on Watt's principle, the capacity of the air-pump and condenser should each be $\frac{1}{8}$ of that of the cylinder, or their dimensions should each be half the diameter and half the length of stroke of those of the cylinder. By multiplying the area of a section of the cylinder by half the velocity, adding $\frac{1}{10}$ for cooling, \&se and dividing the sum by the volume of the steam corresponding to its force in the boiler, the quotient is the quantity of water required for steam per minute. The quantity of injection water should be 24 times this quantity, and the diameter of the injection pipe one 36 th part of that of the cylinder.
62. In a Double Acting engine the proportions of the air-pump, condenser, and cylinder, should be the same as above; the quantity of water required for steam and injection double, and the proportions of the injection pipe and cylinder the same. At the ordinary pressure of 2 pounds per circular inch on the valve, in both engines, the divisor for the volume of steam, is 1497 . The proportions of the dimensions of boilers are commonly stated to be, for width

1, for depth $1 \cdot 1$, and for length $2 \cdot 5$; otherwise, 5 square feet of surface of water is allowed for each horse power. Boulton and Watt allowed 25 cubic feet of space in the boiler for each horse power. 63. Effective Pressure of Steam in Engines. Mr. Tredgold estimates the loss of motive force in the common atmospheric engine due to the uncondensed steam (temp. 160°), to the force requisite to expel it and the air from the cylinder, to the frietion of the piston and axes, and to the force required to open and close the valves and raise the injection water -at 49 of the atmospheric pressure; hence, the effective pressure is only 51 of this pressure or $5 \cdot 9$ lbs. per circular inch. In the atmospheric engine with a condenser, the loss of motive force due to the same causes, with the addition of the force requisite to work theair-pump, is only 458 of the atmospheris pressure; hence, the effective pressure is 542 of this pressure, or 6.25 lhs . per circular inch.
64. In the Single Acting engiue, the loss of motive force due to the same causes, is 402 of the pressure of one atmosphere: hence, the effective pressure is 598 of this pressure. To determine the mean effective pressure when the force of the steam in the boiler is different from that of the atmosphere; Multiply the given pressure in inches of mercury by 598 , and from the product subtract the pressure due to the temperature of the uncondensed steam, the remainder is the pressure required, in inches of mercury; multiply this pressure by $14 \frac{3}{4}$ lbs, the atmospheric pressure on a square inch, and divide the product by 30 , the quotient is the mean effective pressure on a square inch of the piston, which multiplied by $\cdot 7854$ gives the pressure per circular inch.
65. In the Double Acting Engine, the loss of motive force due to the causes above mentioned, is estinated by Mr. Tredgeld at - 368 of the pressure of one atinosphere; hence, the effective pressure is -632 of this pressure. Consequently the mean effective pressure on the piston, when the force of the steam in the boiler is different from that of the atmosphere, is found by the rule in the preceding article. The force of low pressure steam in the boiler, is generally equivalent to that of 35 inches of mercury, the temperature being 220°; and the temperature of the uncondensed steam 120°, its force being equivalent to that of $3 \cdot 7$ inches. Hence, for the Single Engine, we have $35 \times 598=20.93$ inches, and $20.93-3.7=17.23$ inches; whence $17 \cdot 23 \times 14 \cdot 75=254 \cdot 1425$, and $254 \cdot 1425 \div 30=$ 8.47142 lbs . nearly, per square inch ; consequently $8.47142 \times \cdot 7854=6.66$ lbs. nearly, per circular inch. For the Double Engine, we have 35×-632 $=22 \cdot 12$ inches and $22 \cdot 12-3 \cdot 7=18 \cdot 42$ inches; whence $18.42 \times 14.75=271.695$, and 271.695 $30=9.0565 \mathrm{lhs}$. per square inch; consequently $9 \cdot 0565 \times \cdot 7854=7 \cdot 1$ lbs. per circular inch.
66. To Calculate the Power of a Steam Engine. 1. The Common Atmospheric Engine. Multiply 5.9 times the square of the diameter of the cylinder in inches (see art. 63), by half the velocity of the piston in feet per minute, and the product is the effective power in lhs. raised 1 foot high per minute. Divide this product by 33000 , and the quotient is the number of horses' power (see art. 11). 2. The Atmospheric Engine with Condenser. Apply the above rule, but instead of $5 \cdot 9$, use $6 \frac{1}{4}$ for the multiplier (see art. 63). 3. Single Acting Engine.

Multiply the mean effective pressure on the piston (see arts. 64, 65) by the square of its diameter in inches and by half the velocity in feet per minute, and the product is the effective power in lbs. raised 1 foot high per minute. The number of horses" power is found as above. 4. Double Acting Engine. Apply the preceding rule, but instead of half the velucity, use the whole of it, for a multiplier (see arts. 64, 65).
67. To Calculate the Power of an Engine, when the Steam acts Expansively. 1. In the Single Acting Engine. Multiply $2 \cdot 3$ times the common lugarithm of the reciprocal of the fraction denoting the portion of the stroke made when the steam is cut off, and to the product add $\cdot 3$; then, multiply the sum by that fraction and by the whole force of the steam in the boiler, in Ibs. per circular inch; the product is the mean effective pressure on the piston, with which proceed as directed in art. 66. 2. In the Double Acting Engine. Divide $2 \cdot 3$ times the common logarithm of the reciprocal of the fraction denoting the portion of stroke made when the steam is cut off, by the reciprocal itself, and multiply the quotient by the whole force of the steam in the boiler, in lbs. per circular Inch; the product is the mean effective pressure on the piston, with which proceed as directed in art. 66.
68. High Pressure Engines. Those engines in which the steam, after having performed its work, instead of being condensed, is allowed to escape into the atmosphere, are generally called high pressure, but more properly non-condensing engines. The steam which constitutes the moving power, is generated under a great pressure, and its excess above
that of the atmosphere, which is generally from 30 ra 40 lbs . per circular inch, is the effective pressure. The working parts of a non-condensing engine, are the cylinder having steam passages furnished with cocks or valves to admit the steam either at top or bottom, and similar apparatns for itsescape; with the air-tight piston, piston-rod, working-beam, crank, and shaft, as before. When the piston is at the bottom of the cylinder, and the steam passage open below, and the communication with the atmosphere open above, the rest being closed, the steam rushing from the boiler will press on the bottom of the piston and cause it to ascend. By the time it has reached the top, the steam commanication below, and the atmospheric communication above are both shut, and the opposite communications above and below are opened: the steam then rushing from the boiler on the top of the piston will cause it to descend, while the steam that was below will escape into the atmosphere ; in this manner, the alternate motion is continued. The passages are closed a little before the end of the stroke, to prevent concussion against the ends of the cylinder, or strain on the crank shaft; when properly managed, the elasticity of the steam destroys the momentum of the piston, and causes it to recoil without loss of force.
69. To calculate the Poucr of a High Pressure Engine. The excess of the force of steam in the boller above the pressure of the atmospliere, as. shown by the steam gauge, is the motive force; but the loss of force due to friction, waste, cooling, opening of valves, cutting off steam before the end of the stroke, \&cc. is estimated by Mr. Tredgold
at 4 of the force of the steam in the boiler, consequently the effective pressure is only ${ }^{6} 6$ of this force diminished by the pressure of the atmosphere. Hence, When the engine is working at full pressure, multiply the difference between six-tenths of the excess of the force of the steam in the boiler above the pressure of the atmosphere, and fourtenths of that pressure, in pounds per cireular inch, by the square of the diameter of the cylinder in inches, and by the velocity of the piston in feet per minute, and the product is the number of lbs. raised I foot high per minute, from which the number of horses' power may be found as before (see art. 65). If the area of the piston in feet be multiplied by the velocity per minute in feet, the product will be the volume of steam when of the same density as that in the boiler; if this product be divided by the volume of steam which a cubie foot of water forms at the temperature or foree in the boiler, the quotient is the cubic feet of water consumed per minute.
70. When the engine is working expansively. 1. To find the mean effective pressure on the piston; add 1 to 2.3 times the logarithm of the reciprocal of the fraction denoting the part of the stroke at which the stcam is cat off, divide the sum by that reciprocal, and subtract 4 from the quotient; multiply the remainder by the whole force of the steam in the boiler per circular inch, and from the product subtract 11.55 for the pressure of the atmosphere; the remainder is the mean effective pressure in lbs. per circular inch. 2. To find the Power. Multiply the mean effective pressure by the square of the diameter of the piston in inches and by the velocity in feet per minute; and from
the product, find the number of horses power, as before (see art. 65). If the area of the piston be multiplied by the velocity in feet per minute, and the product increased by Io part, be divided by the reciprocal of the fraction above mentioned, the quotient is the quantity of steam in cubic feet consumed per minute; from this quantity the number of cubic feet of water required may be found as before (see art. 70).
71. Length of Stroke and Velocity of an Engine The stroke of an engine is equal to one revolution of the crank shaft, and consequently to double the length of the cylinder. In common parlance however, the length of stroke and the length of the cylinder are synonymous; in this sense, it is to be understood, in the following rules by Tredgold, for finding the proper velocity of the piston: 1. If the engine be regulated by a fly, and the pressure on the piston be the same throughout the stroke, the best velocity is 120 times the square root of the length of the stroke in feet. 2. If the steam act expansively, the velocity is found by multiplying the logarithm of the reciprocal of the fraction denoting the part of the stroke where the steam is cut off, by $2 \cdot 3$, adding $\cdot 7$ to the product, and multiplying the sum by that fraction; then taking 120 times the square root of the product. 3. If the steam does not act expansively, the velocity is equal to 103 times the square root of the length of the stroke. 4. If the steam act expansively at the ordinary pressure of about 8 lbs. per circular inch of the safety valve, and the steam is cut off at half the stroke, the velocity is 100 times the square root of the length of the stroke. In the following table oxemplifying the application
of the preceding rules, the diameter of the cylinder is supposed to be 30 inches, the depth 60 inches or 5 feet, and the velocity 22 double strokes per minute, or 220 feet per minute, the usual rate of the piston in steam engines.

Comparative Table of the Power of the Different Rinds of Steam Enyines.

Kind of Engine.	6troke.	Velocity.	Dis: meter	Temperatare.		
CommonAtmospheric,	full	$\begin{aligned} & \mathrm{ft} \\ & 220 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 30 \end{aligned}$	212	in. 30	18
Do. with Condenser,	full	220	30	212°	30	19
Single acting Lrews $\}$	full	$\cong 0$	30	220 ${ }^{\circ}$	35	20
Do, Expansive,	$\frac{5}{4}$	220	30	2200	85	18
$\left.\begin{array}{l}\text { Double acting Low } \\ \text { Pressure, }\end{array}\right\}$	full	220	30	$220{ }^{\circ}$	35	43
Do. Fxpansive, High Pressure,	full	220 220	30	2810°	95 45	28
High Pressure, Do. Expansive,	full	220 220	30	2770 270	45	58

72. Steam Gauge, Condenser Gauge, Indicator and Governor. The most important apparatus for ascertaining the state of an engine is the Steam Gauge; this is a short bent tube of iron neariy half an inch in diameter open at both ends, one of which is fixed in the boiler, or steam pipe, and the other isopen to the atmosphere; in the bent part of the tube there is placed a quantity of mercury, and the steam pressing on its surface at the one end, raises it in the other leg of the tube ; the height to which it is raised, is measured on a scale, by the slender stem of a float on the surface of the mercury. This apparatus shows the excess of the elastic force of the steam above the pressure of the atmosphere. In some engines, the gauge pipe is made of glass ter-
minating in a cistern of mercury inclosed in an iron box. The steam has free access to the surface of the mercury, and the action of the apparatus is like that of a common barometer.

The Condenser gauge, or barometer gauge as is is sometimes called, is an iron tube in the form of an inverted syphon, having one leg about half the length of the other. The end of the longer leg communicates with the cendenser by means of a pipe furnished with a stop cock. Mercury being poured inte the short leg, it rises in the other to the same level, when the tube is open to the atmosphere at both ends; in the short leg is placed a float with a stem and scale, which indicates by the sinking of the mercury in this leg, and its consequent rising in the longer one, the degree of exhaustion in the condenser. The difference between the elastic force of the vapour in the condenser and that of the steam in the hoiler, as shown by the gauge, plus the height of the barometer at the time, gives the relative motive force of the steam, independent of deductious (see arts. 64, 65).

The Indicator is an apparatus for showing the force of the steam and the state of exhaustion in the cylinder, at the different periods of the stroke of the engine. It consists of a small cylinder about $1 \frac{3}{4}$ inch diameter and 8 inches long furnished witis a piston and a direct communication with the cylithder of the engine. When the force of the steam in the cylinder is greater than the pressure of the atmosphere the piston of the indicator rises, and when less it sinks. The indicator is furnished with a tracer for drawing a curve on paper, showing the variation in the pressure of the steam.

The Governor, though not necessarily peculiar to the steam engine, is a very useful apparatus for regulating the admission of the steam, by its operation on the throttle-value. It consists of two heavy balls so suspended from an axis made to revolve by the operation of the engine, that they rise when the velocity is increased, and fall when it is diminished. To the rods by which these balls are suspended, arms are so connected that the rising or falling of the balls moves a lever which shuts or opens the valve, according as the velocity of the engine exceeds or falls below a certain point. The vertical distance between the point of suspension and the plame in which the centre of the balls revolve, is the same as the length of a pendulum, which makes one vibration during one revolution. The usual velocity for the axis is 30 revolutions per minute, hence the height should bo the same as the length of the second's pendulum or $99 \cdot 199$ inches. To find the height for any other number of revolutions per minute, divide 35225 by the square of that number. For, since the lengths of pendulums are to one another, inversely as the squares of their numbers of revolutions made in the same time; and 30×30 $=900$; we have $39 \cdot 139 \times 900=35225 \cdot 1$ the number in the rule.
73. Safety Valve. A common form of this apparatus is that of a lever of the third order, where the fulcrum is a joint at one end of the lever, the resistance, a moveable weight at the other end; and the power, the pressure of the steam upon the valve, which acts upon the lever somewhere between its extremities. From similarity of form, this apparatus is called the steelyard safety valve. The
pressure of the steam is increased or diminished either by the motion of the weight, along the arm of the lever or by altering the weight itself; this is consequently a very dangerous form of the apparatus, as was unfortunately exemplified in the case of the explosion of the Earl Grey. A more usual and safer form is the valve with spindle loaded with circular weights, until the whole weight per inch exceeds, just a little, the force of steain per inch required to work the ellgine, the orifice being so large as to permit the steam to escape faster than it is generated. To prevent accidents similar to that above mentioned, the valve should be enclosed in a box communicating with the chimney, or perforated with holes, so that the steam when forced through the valve, may escape into the atmosphere. This box, of course, should be kept locked, and the key placed in the proprietor's or captain's charge, so that the valve could never be overloaded without his cognizance. To prevent oversight, a nuinber of such valves might be constructed, so that the probability of accidents would be greatly diminished; they might also be placed in steam boats so as to communicate with the atmosphere by the sides of the vessel, or with the sea by the bottom; in the former case, besides being out of the reach of danger, they would give proper warning of the excess of steam pressure.

For other interesting particulars respecting the Steam Engine, we must refer the reader to Tredgold's work on that subject, to which we are mainly indebted for several of the preceding articles, and to the tables in the third section of this book.

THB

PRACTICAL MECHANIC'S

POCKET GUIDE.

SECT. II. - WEIGHT, STRENGTH, AND STRAIN OF MATERIALS.

CHAP. I.

WEIGHT OF MATERIALS.

74. Definitions. The weight of a body is the quantity of matter it contains, independently of its magnitude or volume. The density of a body is the ratio of its weight to its volume. The specific gravity of a body is the ratio of its density to the density of another body assumed as a standard.
75. Corollaries. 1. The specific gravities of bodies are directly as their weights, when the volumes are equal. 2. The specific gravities of bodies are inversely as their volumes, when their weights are equal. 3. The weights of bodies are directly as their volumes, when the specific gravities are equal. 4. The weights of bodies are directly as the products of their volumes and specific gravities.
76. Standard of Weight. That body which is most universally diffused in nature, which is most easily obtained, and which is most uniform in all circumstances, ought to be selected as the standard of comparison with other bodies in point of weight
and specific gravity. Such a body is water, according to the universal opinion of philosophers; and by a remarkably fortunate coincidence, it is found that a cubic foot of water at a mean temperature of the air, weighs almost exactly 1000 ounces Avoirdupois. Indeed, this fact was so generally known and understood not only in this couutry, but on the coutinent, that it was considered a fixed and established peint in our system of weights and measures, until the experiments of the Royal Commissioners on this subject, as referred to in the Act of Parliament "for establishing uniformity" in 1826 , shewed that at the temperature of 62° Fahrenheit, the atmospheric pressure being 30 inches of the barometer, a cubic inch of distilled water weighs 252.458 grains, and at the maximum density 253 grains ; cousequently, a cubic foot of distilled water at these temperatures, weighs respectively $997 \cdot 137$ ounces, and 999-278 ounces avoirdupois. As water, therefore, weighs very nearly 1000 ounces at 40°, and in common experiments holds foreign matter in solution which increases its weight, the ordinary estimate may be taken as the true one, except in cases where extreme delicacy is required.
77. Specific Gravities and Weights. From the preceding remarks, it is evident, that in a table of the specific gravities of bodies, where that of water is assumed as unity, the weight of a cubic foot of each body will be expressed in thousands of ounces or parts of a thousand ounces avoirdupois; and, if the specific gravity of water be taken at 1000 , then

[^5]the table will show the weight of a cubic foot of each body in ounces; hence the weight of a cubic foot in lbs., and the weight of a cubic inch in ounces may very easily be found. Some useful tables of this description will be found in Sect. III. Moreover, as an Imperial gallon of water weighs 10 lbs . avoirdupois, according to the new act, a table showing the specific gravities of bodies, wher water is assumed as 10 , will show the number of lbs. of cach body, which fills an imperial gallon, or constitutes a cylinder whose diameter is one inch and altitude is 352 inches; hence, when the specific gravity of water is 1000 , the number of lbs, of it body, whose capacity is that of an imperial gallon, is found by cutting off two figures from the number expressing the specific gravity. Thus, the specific gravity of melted lead is, $11 \cdot 352$, water being 1, or 11352 water being 1000 ; hence a unbic foot of lead weigls 11352 ozs . or $709 \frac{1}{2} \mathrm{lbs}$. and a cubic inch weighs 6.569 ozs. Moreover, an imperial gallon of lead weighs 113.52 lbs ., which is also the weight of a solid cylinder 1 inch in diameter and 352 inches high.
78. By means of these tables, the weight of a body may be found from its capacity, and conversely, its capacity from its weight, by a very simple proportion. To render even a proportion in numerous cases untuecessary, very extensive tables of the weight of metal (particularly iron) bars, rods, plates, balls, cylinders, and pipes, have been introduced at the beginning of Sect. III. In all questions regarding the capacity and weight of bodies, it will be useful to remember that the cubic foot which contains exactly 1728 cubic inches, contalns very nearly 2200
cylindric inches, 3300 spherical inches, and 6600 conical inches. Thus the capacity of a box, 60 inches long and 30 inches square, is $60 \times 30 \times 30$ $=54000$ cubic inches, and $54000 \div 1728=31 \frac{1}{4}$ cubic feet. The capacity of a cylinder, 60 in . long and 30 in . diameter, is $54000 \div 2200=24{ }_{\mathrm{II}}^{6}$ cubic feet. The capacity of a prolate spheroid, whose axes are 60 in . and 30 in ., is $54000 \div 3300=16{ }_{1}{ }^{4}$ г cubic feet. And the capacity of a cone whose altitude is 60 in . and diameter of base 30 in ., is $54000 \div 6600=8$ IT 2 cubic feet.
79. Weight of a Fly Wheel. This is usually found by multiplying the number of horses' power of the engine to which it is to be applied, by 2000 , and dividing the product by the square of the velocity of the circumference of the wheel, in feet per second; the quotient is the weight of the fly in cwts. Thus, the weight of a fly-wheel, for an engine of 20 horses' power, is 90.4 cwts., supposing it to be 18 feet in diameter, and to revolve 22 times in a minute.
80. To find the specific gravity of a solid body. This problem is founded on the principle, first observed by Archimedes, that the apparent loss of weight which a body sustains by immersion in a fluid is equal to that of the volume of fluid which it displaces. 1. When the hody is insoluble in, and heavier than water. Weigh it in svater, by means of a hydrostatic balance, or some contrivance of the same kind; then, divide its weight in air (or more correctly in vacuo) by the difference between its weight in air and its weight in water, and the quotient will be the specific gravity of the body, that of water being unity. 2. When the body is
insoluble in, and lighter than water, attach it to a heavier body the difference of whose weight in air and in water is known, provided it be sufficient to sink the compound mass in water ; then, divide the weight of the lighter body in air, by the difference between the losses of weight which the heavier body and the compound mass apparently sustain in water, and the quotient will be the specific gravity of the lighter body.
81. To find the specific gravity of a fluid body. Weigh a solid which is insoluble in water and in the given fluid, in both fluids and in air; then divide its apparent loss of weight in the given fluid by its apparent loss of weight in water, and the quotient is the specific gravity of the given fluid. Otherwise: Fill a small glass measure having a very short narrow neck, and adjusted to hold exactly a thousand grains of water, with the given fluid; then divide the weight of the fluid it contains, in grains, by 1000 , and the quotient will be its specific gravity.
82. When the specific gravities of bodies soluble in water are to be determined, other means must be employed; but as this subject belongs more particularly to Chemistry, we refer to the treatises on that science. The construction and use of the Hydrometer, Areometer, and other instruments for ascertaining specific gravities, will be found in Gregory's Mechanics, arts. 401-409, Vol. I. and p. 211, Vol. II. ; Leslie's Natural Philosophy, p. 306, and Nicholson's Natural Philosophy, p. 16, Vol. II.
83. To find the weights of two different ingredients in a given compound mass, the specific gravities of all three being known. Multiply the weight of the
compound mass, the specific gravity of the heavier ingredient, and the difference between the specific gravities of the lighter ingredient and the mass, continuously together; divide the product by the specific gravity of the mass, and then the quotient by the difference between the specific gravities of the two ingredients ; the result will be the weight of the heavier ingredient contained in the mass; of course, the weight of the lighter ingredient will be the difference between this weight and the weight of the mass. Thus, suppose a mass composed of gold and silver weighed 100 lbs , the specific gravity of the mass being $15^{\circ} 920$, the weight of the gold would be found as follows:
$$
\frac{100 \times 19.258 \times(15.920-10.474)}{15.920 \times(19.258-10.474)}=75 \mathrm{lbs}
$$
whence, the weight of the silver is 25 lbs ."

CHAP. II.

STRENGTH AND STRAIN OF MATERIALS.

84. The Materials employed in machinery are subjected to four different kinds of stress or strain, by which the force of cohesion may be ultimately overcome and fracture ensue. These are, 1. Tension or any stretching force by which they may be torn asunder, as in the case of ropes, tie-beams, kingposts, \&cc. 2. Transverse pressure, or any breaking force aeting perpendicularly or obliquely to the

[^6]direction of their length, as in the case of levers, joists, \&cc. 3. Vertical pressure, or any crushing force acting in the direction of their length; as in the case of pillars, posts, \&cc. 5. Torsion, or any twisting force acting at either or both extremities of a beam or rod, such as the axle of a wheel, a scre w, \&c.
85. The natural forces, inherent in materials, which oppose the preceding forces, are, Direct Cohesion and Elasticity. Numerous experiments have been made on the direct cohesion of different substances, particularly woods and metals-on their resistance to transverse pressure, and their amount of deflection under a given pressure-on the modulus or measure of their elasticity-and lastly, though neither to so great nor so satisfactory an extent, on their resistance to vertical pressure or crushing weight.
86. The following Table contains the Mean Strength and Elasticity of various Materials, as deduced from the most accurate Experiments ; it is the latest that has been published, and it was presented by Mr. Barlow, to the "British Association for the Advancement of Science," at their Third Meeting, which took place at Cambridge in 1833.

The first column of figures marked C , contains the mean strength of cohesion on an inch section of the material ; the second, marked S , the constant for trausverse strains ; the third marked E , the constant for deflections; and the fourth, marked M, the modulus of elastivity. The specific gravity of the different kiuds of wood in this table will be found int Sect. III. ; that of fron varies from 7200 to 7760 .

matemiats.	0	E	E	M	
Wroads.	lba,	1800	4609000	3759000	
\pm Acacin	17000	2026	6380000	4988000	
Beech -	11500	1560	5417000 6570000	415,000 5400000	
Birch, common -		1500	6550000	5406000 3358000	
Box -	20000				
I Bullet.tree		26501	10518000	5978000	
${ }^{1}$ Cabacully -		2500	7437000	4785000	
Deal, Christiana	11000	1550	6350000	5378000	
\square Flm Mcm	11009	1730	6420000	$62 \mathrm{ccou0}$	
7 Fim Fir New England	5780	1050	2808000	3007000	
Mir, New England	12000 12600	${ }_{1130}^{1130}$	5967000	$62+9000$	
- Miga Foreit	12600	1130	5314000	4080000	
T-Green heart		$2700 \mid$	10880000	6118000	
Larch, Seotch	7000	1120	4200000	4180000	
\pm Locust-tree	20050	3100	767000	4610000	
Mahoyany -	8000				
Norway spars	12000	1170	5880000	5780000	
Oak, English $\left\{\begin{array}{l}\text { frow } \\ \text { to }\end{array}\right.$	15000	${ }^{1200}$	3450000 7000000	2872000 402000	
- Amicen	14460	2000		583ionco	
driatic	15000	1380	3880000	2257000	
- Canadian	18000	1780	895000	5671000	
Dantzic	14500	1450	4700000	3607000	
Pear-tris	9800 15000				
\#Poon.	14000	2200	6760000	6196000	
Pine, Pitch	10500	1631	5000000	4361000	
\\|Teak -	10060	1310	7365000	$6 t 28000$	
IT Teak	15000	2700	10680000	7412000 $5 S 25000$	
Troz.					
n, cast $\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.$	$16500 ?$				
	30000				
Wire -					

The use of this table will be excmplified in the following problens, for the demonstration of the principles of which, we must refer the reader to the scientific treathes on Natural Philosophy.

+ Of English growth. * American. T Berbice, I Scotland
0 East Indies. \ddagger Nean of English and Foreign.

87. Force of Direct Coluesion or Tenacity of Materials. The resistance of a homogeneous body to longitudinal tension or a stretching force is proportional to the area of a transverse section; hence, the centre of tenacity is the same as the centre of gravity of the section. The absolute strength of rods or beams is estimated by the cohesive power of the material of which they are composed. The preceding table exhibits in column C, the force of direct cohesion in lbs. avoirdupois for every square inch of area in the transverse section of a beam or rod of the materials enumerated in the first column.
88. To find the absolute strenyth or force of direct cohesion of beams or rods of given materials, that is, their absolute resistance to longitudinal tension or strain in lbs. Hule. - Multiply the area of the transverse section of the rod or beam in inches by the tabular number, in the column marked \mathbf{C}, opposite the name of the material, and the product will be the strength or resistance required. Note. 1. In practice the weight or strain should not exceed $\frac{1}{8}$ of the absolute strength according to Barlow, or $\frac{1}{3}$ according to Tredgold. Thus; the force which would tear asunder a piece of teak $4 \frac{1}{2}$ inches broad and 2 inches thick, is $2 \times 4 \frac{1}{2} \times 15000=135000 \mathrm{lbs}$. Hence a longitudinal strain of more than 45000 lbs . would be unsafe in practice. Note. 2. The tenacity of materials of the same kind is proportional to their specific gravity. Hence, a piece of teak whose specific gravity was $\frac{3}{20}$ part less than that of the preceding, would have $\frac{\pi}{20}$ part less of cohesive power.
89. When the direction of the straining force does not coincide with the perpendicular to the centre of tenacity or centre of gravity of the trans-
verse section, the Rule is modified as follows: Multiply the tabular number in col. C, by the breadth and the square of the thickness of the beam, both in inches, and divide the product by the sum of the thickness and 6 times the distance of the line of direction from the centre of the section, in inches; the quotient will be the absolute strength required, of which take $\frac{1}{3}$ as before, for the practical load. Note. In actual constructions an allowance of $\frac{1}{3}$ of the thickness should be inade for the probable deviation of the direction of the stretchiug force. The absolute strength will then be $\frac{1}{3}$ of that found by the Rule in the preceding article; and the practical load $\frac{1}{3}$ of the same quantity, or $\frac{1}{22}$ according to Tredgold.
90. To find the dimensions of a rod or beam to resist a given longitudinal strain, that is, to sustain a given weight without fracture in the direction of its fibres. Rule.-Mulliply the tabular number in cot. C, by the number denoting the ratio of the breadth to the thickness, and divide 9 (or 12) times the given weight in lbs. by the product; the square root of the quotient will be the required thickness in inches, and the thichness multiplied by the number of the ratio will give the breadth required. Thus, the dimensions of a beam of the strongest English oak to sustain a doad of 20 tons in the direction of its fibres, supjesing the breadth to be 3 times its thickness is $\sqrt{ }\{(9 \times 44800) \div(3 \times 15000)\}=3$ inchesnearly, the thickness required; whence $3 \times 3=9$ inches, the breadth required. Note. If the beam be cylindrical, divide 9 times the given weight by 7854 times the tabular number, and the square root of the quotient will be the diameter.
91. Force of the Transverse Resistance of Materials. This force is proportional to the product of the breadth and the square of the depth in rectangular beams (more properly parallelopipedal beams), and to the cube of the diameter in cylindric beams; but it is in the inverse ratio of the length, modified by the cosine or square of the secant of the angle of deffection immediately before fracture, and by the manner in which the beam is supported. In ordiuary practice, the consideration of the angle of deflection may be omitted.
92. To find the relative strength or force of resistance of rectangular beams or rods of given materials, to transverse strain or pressure in lbs. 1. When the beam is fixed at one end and loaded at the other. Rule. Multiply the tabular number, in the column marked S , opposite the name of the given material, by the breadth of the beam in inches, and this product by the square of its depth in inches, and divide tbe result by the length of the beam in inches, the quotient will be the strength or resistance required. 2. When the beam is fixed at the one end and uniformly loaded, the strength or resistance will be double the preceding resistance, which for brevity we shall call the prime resistance. 3. When the beam is supported at both ends and loaded in the middle, the strength will be four times the prime resistance. 4. When the beam is supported at both ends and uniformly loaded, the strength will be eight times tbe prime resistance. 5. When the bearn is fixed at both ends and loaded in the middle, the strength is six times the prime resistance. 6. When the beam is fixed at huth ends, and uniformly loaded, the strength is twelve times the prime resistance.
93. When the beam is supported at both ends and loaded at a point not in the middle, the strength is found by multiplying the prime resistance by the square of the length, and dividing the result by the product of the leugths of the segments into which the beam is divided at the point of application of the load.
94. In all the preceding cases, it must be remembered that not more than one-third of the ultimate strength found by the rule, ought to be depended upon for any permanent construction, according to Barlow, and only one-fourth according to Tredgold, who adds that if the beam be not horizontal, the distance between the supports must be the horizontal distance. As an example, the weight which a beam of Riga fir, 20 feet loug, 12 inches broad and 12inches deep, supported at both ends, would sustain in the middle, is $(1130 \times 12 \times 144) \times 4 \div 240$ $=32544$ lbs. and the practical load is $32544 \div 3=$ 10848 lbs . or $32544 \div 4=8136 \mathrm{lbs}$.
95. When beams are cylindrical, their resistance to transverse pressure is only two-thirds of that of a square prism of the same thickness. In the case of a hollow cylinder, the resistance will be found by multiplying the difference of the cubes of the interior and exterior diameters by 8 times the modulus of elasticity and dividing the product by 9 times the length. If the hollow part be io of the diameter of the cylinder, its strength will be reduced to about $\frac{1}{12}$ more than $\frac{1}{4}$ of that of the solid cylinder ; but if the tube were formed into a solid rod its strength would be only about I^{2} part of that of the solid eylinder. A cylinder having half its core hollowed out should be rendered only $\frac{7}{6}$ part weaker, which
agrees with an experiment made by Barlow. We see bere the divine process of nature in making the bones of animals hollow, and the imitative ingenuity of man in making oast metal pillars tubular, thus combining lightness with streugth in their structures.
96. The lateral or transverse strength of any beam thus depends mainly on the distance and cohesion of the upper and under surfaces. Whatever stiffens the exterior layers contributes greatly to strengthen the whole. A small incision drawn across the under side weakens a bar essentially; while a notch cut near the middle of the upper side will not impair the strength, but if filled up with a harder material will even sensibly augment it. Thus Duhamel found that a bar of willow cut throught $\frac{1}{3}$ of its depth, the cut being filled up with a thin slip of hard wood, was thereby rendered $\frac{7}{6}$ part stronger than before. It was evell remarked that the incision could be carried much farther without injuring the strength of the bar.*
97. To find the breadth and depth of a beam of given length and material, so that it may, in practice support a given load, in the case of prime resistance (art. 92). Rule. Multiply the given weight in lbs by the length in inches, and divide this product by 4 times the product of the tabular number in col. S , and the number denoting the ratio of the breadth to the depth; then, the cube root of the quotient will be the required depth in inches, from which the breadth is found as before (art. GO). In all other cases, the tabular number in col. S, must he multiplied by the number denoting the increase of

[^7]strength or resistance arising from the mode of fixing the beam (art. 92), before the above rule be applied. Thus, the depth of a beam of Scotch Fir, 18 feet long, to bear a load of 20 tous at the middle, when supported at both ends, the breadth being half of the depth, is $V\{(4 \times 44800 \times 216) \div(1140$ $\left.\left.X \frac{1}{2} \times 4\right)\right\}=20 \cdot 4$ inches nearly; whence the breadth is $10 \cdot 2$ inches. When the breadth or depth is given, the calculation is easy, as the rule in art. 92 , requires only to be reversed.
97. Deflection of Beams under Transverse Strains. The deflection of beams under given weights is proportional to the product of the weight and cube of the length directly, and to the product of the breadth and the cube of the depth inversely; whence the elasticity is deduced, being proportional to the deflection. Consequently, beams will be of the same stiffness, when the depth is increased in the same proportion as the length, the breadth remaining the same; and the deflection of beams arising from their own weight, having their several dimensions proportional, will be as the square of either of their like lineal dimensions. The same will apply to beams loaded throughout proportionally to the dimensions; this ought to be kept constantly in view in the construction of models, on a small scale, of works intended to be executed on a large one.
98. To find the Deflection of a Beam: 1. When supported at both ends and loaded in the middle. For brevity's sake, we shall call this the prime deflection. Rule. Multiply the given weight in lbs. by the cube of the length of the beam in inches, and divide this product by the continuous product of the tabular
number, in the column marked E , opposite the name of the given material, the breadth, and the cube of the depth, the quotient will be the required deflection in inches. 2. When the beam is fixed at one end and loaded at the other, multiply the prine deflection by 32.3 . When it is fixed tbe same, but uniformly loaded, multiply the prime deflection by 12. 4. When it is supported at hoth ends and uniformly loaded, take $\frac{5}{8}$ of the prime deflection. 5. When it is fixed at both ends and loaded in tbe middle, take $\frac{2}{3}$ of the prime deflection. 6. When it is fixed the same, but uniformly loaded, take ${ }_{12} \frac{5}{2}$ of the prime deflection. Thus, the prime deflection of a beam of Pitch Pine, 30 feet long, 6 incbes broad, and 10 inches deep, supported at both ends, and loaded in the middle with a weight of 1000 lbs . is $(1000 \times 27000 \times 1728) \div(5000000 \times 6 \times 1000)$ $=1 \frac{5}{6}$ inches nearly; whence the deflections due to other modes of fixing and supporting, may easily be found. Note. If the beam be a cyliuder, the deflection will bo 1.7 times tbat of a square beam in similar circumstances.
99. To find the weight which will produce a given prime deflection, on a beam of given material and dimensions. Rule.-Find the continuous product of the tabular number in col. E, the breadtb, the cube of the depth, and the given deflection, and divide this product by the cube of the length, the quotient will be the weight required. Thus, the weigbt which will produce a deflection of $1 \frac{1}{2}$ inch on a wrought irou beam, 20 feet loug, 3 incbes broad and 9 inches deep, supported at both ends, and loaded in the middle, is $\left(91440000 \times 3 \times 729 \times 1 \frac{1}{2}\right)$ $\div(8000 \times 1728)=21699 \mathrm{lbs}$ or uearly 10 tons;
whence, the weight for other deflections, may easily be found.
100. To find the depth requisite for a beam of given material, length and breadth, to bear a given load with a given prime deflection. Rule.-Divide the given load in lbs. by the continuous product of the tabular number in col. E, the breadth and the deflection, and multiply the cube root of the quotient by the length, the product is the depth required. Thus the depth of a wrought iron beam, 20 feet long, 3 inches broad, requisite to support a load of 10 tons with a prime deflection of $1 \frac{1}{2}$ iuch, is $240 \times$ $\sqrt[7]{ }\left\{(10 \times 2240) \div\left(91440000 \times 3 \times 1 \frac{1}{2}\right)\right\}=9 \cdot 1$ inches nearly. When the breadth is not given, multiply the given weight by the cube of the length, and divide this product, by the product of the tabular number in col. E, and the given deflection, the quotient is the product of the breadth and cube of the depth. Hence, when the beam is to be square, the fourth root of the quotient is the breadth or depth required; and when it is to be cylindric multiply the quotient by $1 \cdot 7$, and the fourth root of the product will be the diameter.
101. Practical Remarks. Shafts which are to be cut for inserting arms, \&c., should be made longer in proportion to the quantity removed by cutting. The deflection for shafts should not exceed iso of an inch for every foot of leugth, this being considered the limit; they ought also to be made always as short as possible, to avoid flexure. The deflection of $\frac{1}{40}$ of an inch for each foot of length is not injurious to ceilings; the usual allowance being double this quantity. Ceilings have been found to scttle about 4 times as mucb without causing cracks,
and have been raised again without injury. The varinble load on a floor can seldom exceed half the maximum or 120 lbs . for a square foot, except in pablic rooms; hence, the allowance may be taken from 60 to 120 lbs . according to circumstances. This rule applies to joists for floors.
102. The modulus of Elasticity is the measure of the elastic force of any material. It is found by the following proportion: As the portion of the length of a column of the material, which it loses by compression, is to the whole length before compression, so is the force which produced that compression, to the modulus of elasticity. Sir John Leslie has shown that the modulus of elasticity is found by dividing 5 times the fourth power of the length of a beam, by 32 times the product of its spontaneous depression and the square of its depth. In his work on Heat, he observes that a white deal 138 inches long and $\frac{9}{20}$ of an inch deep, suffered a depression of $2 \frac{1}{2}$ inches by its own weight; hence $(5 \times 138$ $\times 138 \times 138 \times 138) \div(32 \times-45 \times 45 \times 2.5)$ $=111936000$ inches, or 9328000 feet, in round numbers. The numbers in col. M, may be found from those in col. E, by multiplying the latter by 576, and dividing the product by the corresponding spccific gravity.
103. The Resistance of Materials to a crushing force, appears to be directly proportional to the fourth power of the dianeter in cylinders, or of the side in square prisms, and inversely proportional to the square of the height.
104. To find the weight which a column of given material will support before flexure. Multiply the tabular number in col. E, by $\cdot 121$ times the fourth
power of the diameterininches, in cylindric columns, or '2056 times the side in inches, in square prismatic columns, and divide the product by the square of the length in inches, the quotient is the weight required in lbs. Note. When the base of the column is rectangular, multiply the tabular number by ' 2056 times the area multiplied by the square of its breadth, and divide as before. Only $\frac{1}{3}$ or $\frac{1}{4}$ of this weight ought to be depended upon, in practice; for when once the column begins to bend, the oonsequences are inevitable. Thus, the weight under which a pillar of New England fir would begin to bend, supposing its length 20 feet and its diameter 12 inches, is $(5967000 \times \cdot 121 \times 12 \times 12$ $\times 12 \times 12) \div(20 \times 20 \times 12 \times 12)=259922.52$ lbs. or nearly 116 tons, a most enormous lond, according to theory; but 29 tons could only be trusted in practice.
105. The Resistance of Materials to the force of Torsion, or Twisting, is directly proportional to the angle of torsion and the fourth power of the diameterin cylindric shafts, and inversely as their length, according to Sir John Leslie; other writers say, that it is directly proportional to the cubes of the diameters. According to the Professor's law, the power of an iron cylinder to resist the torsion of a weight in lbs. acting at a distance of a foot, is found by dividing 600 times the fourth power of the diameter by the length. The preceding principle is employed in the construction of the Balance of Torsion, invented by Coulomb, for which see an account in Hebert's "Engineer's and Mechanic's Cyclopeedia," a highly useful and ingenious work at present publishing in monthly parts.

PRACTICAL MECHANIC'S

POCKETGUIDE.

SECT. 1II.-PRACTICAL TABLES,

I.-WEIGHT OF METALS.

MALLEABEE TRON, SQUARE, ROUND, AND FLAT.
Table I. contains the weight of Square Iron In sizes, from $\frac{1}{4}$ inch to 6 inches square, advancing by $\frac{1}{8}$ inch; and from 6 to 12 inches square, advancing by $\frac{1}{4}$ inch; and in lengths, from 1 foot to 18 feet. The sizes are arranged in the first column of each page, and the lengths along the top; the weights in lbs. immediately under the lengths and in a line with the sizes.

Table II, contains the weight of Rounn Iron in sizes from $\frac{7}{4}$ inch to 6 inches diameter, advancing by $\frac{1}{8}$ inch; and from 6 to 12 inches diameter, advancing by $\frac{1}{4}$ inch; and in lengths from 1 foot to 18 feet. The sizes, lengths, and weights are arranged as in Table I.

Table III. contains the weight of Flat Iron in widtlis, from $\frac{1}{4}$ inch to 6 inches, advancing by $\frac{2}{4}$ inch; in thicknesses from $\frac{1}{4}$ inch to linch, advancing by $\frac{1}{8}$ inch; and in lengths, from 1 to 18 feet. Tho widths, lengths, and weights, are arranged as in the preceding tables, and the thicknesses alongside of the widths.

TABLE L, -SQUARE TRON.

size.	1 ft		3 ft	4 ft	5 ft	6 ft .	2 t	8 ft	9 ft
ins.	Iths.	1 bs	Jbs	Ibs.	1 l S	Ibs,	Ibs.	1 hs,	Its,
	2	$0 * 1$	$0^{*} 3$	$0 \cdot 8$	$1{ }^{\prime} 1$	173	15	17	3
	0%	1-9	1*4	19	24	2-9	33	38	3
	$0 \cdot 8$	17	$2 \cdot 5$	34	$4 \cdot 2$	5-1	59	68	76
	13	$2^{\circ} 6$	$4^{+} 0$	53	$6^{*} 6$	79	92	$10^{\prime} 6$	119
	19	$3 \cdot 8$	57	$7 \cdot 6$	$9 \cdot 5$	11:4	138	$15 \cdot 2$	$17^{\prime \prime}$
$\frac{7}{1}$	26	$5 \cdot 9$	78	104	129	$15^{\prime} 5$	181	$20^{\prime \prime} 7$	233
1		6.8 8.6	$10^{\prime} 1$	135	169			0	30,4
1	4.3	$8^{\prime} 6$	128	17!	21.4	257	299	:4,2	38.5
	53	$10^{\prime} 6$	158	$21 \cdot 1$	264	317	370	$42 \cdot 2$	475
	$6 \cdot 4$	12-8	$19 \cdot 2$	256	320	38.3	447	$51+1$	575
	$7 \cdot 6$	152	2298	3514	38.0	45%	552	60ig	$88 \cdot 4$
1	$8 \cdot 9$	179	268	357	$44^{\circ} 6$	5.6	6125	14	$80 \% 3$
1	$10 \cdot 4$	$20 \cdot 7$	$3 \mathrm{I}^{+1}$	414	51.8	621	$72 \cdot 5$	82.8	93\%
17	119	$23 \cdot 8$	356	473	594	$71 \cdot 3$	EJ'2	95 7	1069
3	135	270	406	511		$81{ }^{1} 1$	916	1	-
8	15'3	30.5	458	$61^{\prime} 1$		91.6	1/16-3	129.1	$7{ }^{\prime \prime}$
$2 \frac{1}{8}$	171	342	$51+3$	684	856	1027	$119+8$	198재	$154{ }^{\circ}$
	1811	581	57.2	763	95%	114:4	$133 \cdot 5$	1525	1717
	211	$42 \cdot 2$	634	845	1056	1267	147 '8	$169+0$	$190 * 1$
	23 3	466	699	93%	$116 \cdot 5$	$139 \cdot 8$	168.0	186;3	909*6
	256	511	767	7022	$127 \cdot 8$	1334	1789	2014 5	2370
2	279	55-2	835	1118	1597	1676	1957	2.35	2515
9.	$30 * 4$	60 5		121%	1.52 ${ }^{1}$	1825	2127	2438	37
31	330	660	98.0	1320	1657	198 ${ }^{\prime}$	231'1	264.1	$297 \cdot 1$
	357	714	1071	1428	1785	21142	2499	$285 \cdot 6$	$321 \cdot 3$
	38.5	770	115	1540	198'5	9810	4695	3080	$346{ }^{5} 5$
31	41.4	$82 \cdot 8$	1242	$165^{*} 6$	$20 / 70$	2184	2898	5831-3	272.7
30	$44 \cdot 4$	888	$1: 833$	1777	222-1	2665	3109	3553	399'8
0	475	$95+1$	1424	1901	2877	2854	3327	난ㅇ․ 3	49718
32	$50^{\circ} 8$	1015	15**3	$203^{\circ} 0$	955'8	3045	355 '3	4060	456.8
4	$54 \cdot 1$	108*2	1623	$216: 3$	2704	3945	3.86	4327	$486^{\prime} 8$
43	$57 \cdot 5$	$115 * 0$	172%	980'1	$287{ }^{\prime} 6$	$945 \cdot 1$	4026	$460 \cdot 1$	7
	$61+1$	122.1	$163 \cdot 2$	2452	30513	SE6:3	4274	4684	$9 \cdot 5$
	647	$129 \cdot 4$	1951	$238 \cdot 8$	323.5	$388{ }^{\circ} 2$	4529	5176	3823
	$68^{\prime} 4$	1309	2053	2788	348 g	$410^{\circ} 7$	4781	5176	616.0
	723	144*6	2169	289	S61-5	$438 \cdot 8$	$506-1$	$578 * 4$	850\%7
	$76 \cdot 3$	1525	2288	305^{-1}	3313	4576	5898	$610^{\circ} 1$	$696 * 4$
4%	$80 \cdot 3$	1607	2110	3213	401*7	4820	56843	$612 \cdot 7$	728.0

TABLE T.-SQUAREIRON.

size,	10			13 ft .		15 ft	16 ft	17 f	18 ft
	7bs,	Hzs.	1 bs	Ibs.					
	$2 \cdot 1$	9*3	25	27	3×0	32	34	36	8
	$4 \cdot 8$	5%	5	62	67	$7 \cdot 1$	76	$8 \cdot 1$	86
	85	9.3	10'1	110	$11 \cdot 8$	12	135	$14 \cdot 4$	152
	13%	145	15×8	172	185	198	91.1	22\%4	$28 \% 8$
	$19 \% 0$	20.9	$22-8$	247	$86^{\circ} 6$	$28+5$	$30 \cdot 4$	$32 \cdot 3$	$3+2$
	2549	285	31^{-1}	336	$38 * 2$	388	41%	$44^{\circ} 0$	466
1	38,8	$37 \cdot 2$	$40^{\circ} 6$	439	478	$50 \cdot 7$	$5 \square^{\prime \prime} 1$	5	608
	$42 \cdot 8$	$47^{\circ} 1$	51.3	$55-6$	$59 * 9$	6+'2	68^{-4}	727	770
	598	$58 \cdot 1$		[876	78.9	79.2	845	898	950
	639	70	767	88.1	8955	959	102^{*}	1086	1150
1	760	$83 \cdot 6$	91-2	88.9	1065	$114 \cdot 1$	1917	$129+3$	1369
1	893	98.2	$107^{\prime} 1$	1160	$125 * 0$	1539	148×8	1517	1607
17	1035	1139	$124 \cdot 2$	1346	14.4.9	15.53	16576	$176^{\circ} 0$	1863
$1 \frac{1}{6}$	1188	$130 \cdot 7$	1426	1545	$186^{*} 4$	1782	$190^{*} 1$	$208{ }^{2} 0$	2139
$\begin{aligned} & 2 \\ & 216 \\ & 24 \\ & 29 \\ & 23 \\ & 276 \\ & 93 \\ & 27 \end{aligned}$		1487		$175 \cdot 8$	189×3	202.8	$216 \cdot 3$		$213^{\prime} 4$
	15951	1972	153"2	1984	$213^{\circ} 7$	2289	$211^{\prime} 2$	2595	2767
	$17 \mathrm{I}^{\prime \prime} 11$	18942		2y9'5	230\%6	2567	$273 \cdot 8$	2409	5080
				2479	26699	2860	$305^{*} 1$	824.1	343:2
	211.2			2746	2957	3168	3.379	359%	$380 \cdot 2$
				3028	325^{+1}	3194	3727	3×67	4193
	955			53893	$357 \cdot 8$	$383 \cdot 4$	$409{ }^{\circ} 0$	484.5	$460 \cdot 1$
	275			563.2	391*1	$419 \cdot 1$	447%	4754	$502 \cdot 9$
3				3994	425	456.2	$486 \cdot 7$	$517 \cdot 1$	5475
48	$3330{ }^{-1}$	363*1	856. ${ }^{\text {a }}$	429.1	$452 \cdot 1$	4952	528'2	5812	8, 014
	$357 \% 3$	$392 \cdot$	428.4	$464 \cdot 2$	4972%	5356	5713	6077	6427
39	$385{ }^{\circ} 04$	443:3	46420	$500-5$	$539^{\circ} 0$	5775	6160	65176	6987
	414'14	4.55	1969	5883	5797	6211	$662{ }^{\prime} 5$	$708 \div 9$	74513
	4118	88	5330	5774	$621: 9$	E869	7107	$755 \cdot 1$	7995
	475435	529.9	5704	617\%	$665 * 5$	71.30	7605	$875 \cdot 1$	8556
37	$507 \cdot 65$	538%		6598	$710^{\prime} 6$	7613	$812{ }^{\prime}$	8629	913%
4				703^{+1}	$757 \cdot 2$	811.3	8653	919-4	9733
	57.	-	0^{2}	7477	$805^{\prime 2}$	8628	92083	9778	10353
4		87168	732+7	7 5 37	$85+8$	915.8	9769	10379	10990
43	6470	ค52	7764	841'1	905'8	$970 \cdot 5$	$11835^{\circ} 2$	$1099{ }^{-9}$	11646
	6815	7529	1-4	889.9	$558 \cdot 3$	10267	$1095-2$	1163^{-6}	$1232+1$
		79	86177 915%	9400	1012*3	10846	11569	$1295{ }^{2}$	13015
4.3	8	59	5%	9014	1067 7	$1144 * 0$	12202	19965	15728
	808	88379		104431	$112+7$	1205	12853	1307	14400

TABLE L-SCUARE FRON.

size.	1 ft	2 ft .	3 ft .	4 nt	5 t.	6 ft	7 ft	8 ft	9 ft
	16	1 bs	lbs.	Ibs					
	8	168%	2534	337	$422 \cdot 4$	5069	5914	675	
	88.8	1776	2664	3559	4438	5327	681 -3	710	${ }^{799} 8$
	932	1868	2595	3727	1408	6 600		5453	848'5
58	977	11953	2830	$590 \cdot 6$	4883	205 9	650\%	7815	8789
	102	2045	3067	$409^{\circ} 0$	51	613%			$980-2$
	$110 \% 0$	913:5	3209	4278	5348	641^{17}	2487	8856	962.6
	1118	228.5	885.3	4470	558.8	$670 \cdot 5$	782 3	8940	$1005 \cdot 8$
$5{ }^{\text {\% }}$	1167	2333	8500	4667	5534	$700{ }^{\circ}$	8167	983.4	10500
6	12		3550			7300	8316	9733	
	132	$264 \cdot 1$	3886.1	5282	680.8	7922	9843	10563	
	1425	2856	4584	571.3	$714^{\prime} 1$	8569	089 a	11425	12953
$6{ }^{4}$	15 ± 0	$308^{\circ} 0$	463.0	616%	7701	9241	$1078{ }^{\circ}$	123:	$1: 861$
7	165		4869	6625		9938	11:94	1825'1	7
7\%	177	3253	583.0	$810^{\circ} 7$	8684	10660	12137	1421'4	15990
\%	1509	3803	5704	7605	9807	$1140 \cdot 8$	1981*	1581-1	$711^{\circ} 3$
ร3	203		bes-1	812.1	1015%	12181	14212	1021-2	
E	2163			$8 \mathrm{C}+3$	10817	$1298{ }^{\circ} 0$	15144		
	280°	4601	6i02	9203	11503	13804	16105	$18: 0$	
,	244	4884	7827	9769	1921-1	14693	1789.5	1953	1980
,	253	$517 * 6$	7*6'4	1035'2	12910	15598	18116		
9		5476	821.4	$1095{ }^{2}$	19990	1612.8	1916:5		'1
916	2892	525•4	8×77	11569	14461	$1735 \cdot 3$	2024:		80
	30541	6101	915%	1290-2	1atb:	1850*3	$2185{ }^{\circ}$		5
9\%	321:3	6 id 7	$264{ }^{\prime} 0$	1285*3	16067	1928 ${ }^{\circ}$	22492		
10	83	6758	10138	13517	16896	20275			
104	2555°	2103	10654	14205	1757	$21: 50 \cdot 8$	24669	2841°	962
705	8287	74513	1118.0	14907	18634	22360	29087	21	510
10\%		7813	11719	15029	1253'1	$2313 \cdot 8$	27314		7
1		8179	12969						
31	42	8556	$1283{ }^{4}$	$1711 \cdot 2$	21	25	29947	3422'	003
115	117%	814.0	13417	$1788{ }^{\circ} 1$	2285	2689°	31292	10.	2
118	4667	8884	$1400^{\prime} \mathrm{L}$	18167	2489		32068	9783.5	2
12									

TABLE L-SQCARE IRON.

size.	10 ft .	11 ft	12 ff .	13 ft	14 ft	15 ft .	16 ft .	17 ft	18 ft
$\frac{34}{53}$	$\begin{aligned} & 1 \mathrm{bs}: \\ & 8118 \\ & 8878 \\ & 9377 \\ & 97086 \end{aligned}$		$\begin{gathered} 1 \mathrm{lbs} . \\ 10138 \\ 10654 \\ 11180 \\ 11719 \end{gathered}$	1 bs $1098^{\circ} 9$ 11512 12119 12695	$\begin{array}{\|c\|} \hline 16 s . \\ 11897 \\ 12430 \\ 15014 \\ 1967 \cdot 2 \end{array}$	lbs. 12072 13318 13975 14649	libs. 18517 14205 1907 15625	$\begin{array}{\|l\|} \hline \text { lbss } \\ 14.36^{\circ} 2 \\ 1500^{7} 9 \\ 15899 \end{array}$	$1 \mathrm{lb} \times 8$ 15206 15081 1070 17578
	100			18904	14973		1711		
	111781		344^{-1}	14598	15646	1676	1788.1	1899	
5%	$1165^{7} 71$	12834	14001	15167	16334	$1750 \cdot 1$	1866'7	1083	$100^{\prime 2}$
0.	121.					$1825 \cdot 1$			
	1330	115	15854	7105	18486	19906	21126		
	142	25710	17138	$1556{ }^{\circ} 6$	19094	214\%'2	2285	213	25707
68	155011	1094.1	$1848 \cdot 1$	2002	21562	23102	24614	261	7282
			21381 22816	S3097 97718	9187.1 26519				
碳	2030	333	24363	26393	284	30454	32484		44
				1249	41	Hots	200		
	7442:2			1749	$3419 \cdot 1$	063 3	39075		
$8{ }^{1}$		28168	31056	33644	36832	982.0	4140	13097	1658' ${ }^{\text {c }}$
						4106	7		
	2892 2:	31814	31700	37509	40491	18353	40¢		2060
				3967\%	420	1075 8	18809		
9\%	32313	35347	560	41773	4408°	1880.0	5141		0
			40550						
	35514	3,00.	4261.6	46168	4971.9	53970			
	3726.7	40994	$4472 \cdot 1$	4814.7	2174	$5590{ }^{1}$	5962		708:1
10 d	$3500{ }^{\text {a }}$	42970	4687 ${ }^{4}$	5078	5468	5859×4	6250		,
	$4039 \cdot 6$								
		4705					-	72	
	44702	4917	586	$5811-3$	6259	67	524	755	64
11	48068	5133	560	6066	6533	70t	74669		3
		[5						

TAMLE II,-ROUND IRON.

	1 ft .	2 f	3 ft	4 ft	5 ft .	6 f .	7 ft	8.t.	9 ft
	lbs,		lbs.	lbs.	lbs.				
				07	088	10	12	13	5
	04	07	${ }_{2}^{1.1}$	5	12		6	0	
		$2 \cdot 1$	$3 \cdot 1$		52	63		-	$9 \cdot 4$
		3.0	$4 \cdot 5$	$6{ }^{\circ}$	75	90	$10 \cdot 5$	119	134
	20		$6 \cdot 1$	$8{ }^{\prime} 1$	102	12	14	163	18\%
			10	13					
	4	83	125	167	20	25	29	394	375
	$5{ }^{\circ}$	100	$1{ }^{151}$	20.1	2.1	$30 \cdot 1$	351	$40 \cdot 2$	45.2
	60	119	179	239	20	35	$4{ }^{17}$	478	3\%
	70	140	21.0	${ }^{23} 5$	${ }^{35} 1$	421	497	561	631
	81	163	14	32.5	$40 \cdot 1$	488	5679	650	
	93	$18^{\prime} 7$	280	37%	167	560	653		
	\%	$22^{\circ} \mathrm{O}$	36°	18	59	71	839	959	1079
	134	$26^{9} 9$					$91 \cdot 1$		121.0
					4	89	0t		1348
		35	5						
					91				
	21		65				153		
	23			956					
	25	51	77.8	1037	1296	155	1815	2074	
	28	56	81.1	1122	14	16	1903	2243	
			975						
	37	698	1127		1784	2240			
			119		199		2770		
		90	1355	1807	2259	2710	3162	331.4	4066
	480	959	1439	1918	239	2877	3357		
		1016	1524	2033	251	3019	3507		4573 1528
	538	107	17	2150	2638		3	$130 \cdot 1$	
	5	113						4593	51.1
	60	119	179	239	2995	${ }_{3}^{35}$	4193	4792	
	63	126		252	31.				

TABLE II, -BOUND IRON.

	10 ft .	11 ft .						17 ft .	8 ft .
	1 l \%	1bs.		lis.					
								$\begin{aligned} & 28 \\ & 63 \end{aligned}$	$\begin{aligned} & 39 \\ & 67 \end{aligned}$
		4.1	4	8	5	5%			67
	$10 \cdot 4$	115	12%	136	14.6	15		17.	189
	149	16		$19 \cdot 4$	20%			2.	
d	203	24	214	64	$25^{\prime} 4$				
	336			43					
	417	45	$0 \cdot 1$	54%	564	\square	$66{ }^{\circ}$	$70 \cdot 9$	$5 \cdot 1$
	50°	55.2	60	65	203	75	803	853	903
	59	57	71	776	B	89	95	101	75
			$8 \cdot 1$	91.1	98.1	105"	112	119	20
	81.3		975	1057	1138	121-9	130	138	1463
	933	1087	$112{ }^{\circ}$	121:3		1400	140	158	
	1109	131.9		$155 \cdot 8$		1798			
	$134{ }^{-1}$	1478	1613	1747	188	2016	215	228.5	419
	1498	1647	1797	1947	2097	2345		254	
	1669	1836	2003	2169	2936	2503		283	$300 \% 4$
	1829	2012	2105	2378	2561	2744	292	311	32.
	20		2109	261.0		301.1		3113	
276	219			285		$329 \cdot 2$			
		285	3111	337%					
			3365	3645		420		4707	50178
	302	33	3029	3031		$453 \% 6$	153	514.1	541
			$300 \cdot 1$	1227		4877			
	348	383	$418{ }^{\circ}$	4585					
	373	4107	4180	4853	5226	56070	597	634	672
	308	43		51				67%	
	451	4969	$3!$		631	6776	72	761.0	813
	470	5.75	5754	6334	6713	7198	7672	8159	863
	5188	559.0	6098	(00)	714	7622	Siso	8609	9
	5876	591.4	6451	6989	7526	8064	860-2	9139	
	5679	62							
	59						9584	1018 's	10782
	6309			8			10695		

TABLE IL-ROUND IRON.

size.	1 ft ,	2 ft .	3 ft	4 ft	5 ft .	6 ft .	7 5 tm	8 ft .	9 ft .
	th	13	1	1 bs	lbs	Ib			
	65 's	1335	2003	23770	3338	400-5	5.3	0	3
	$60 \cdot 7$	1895	209'2	$478 \cdot 9$	3187	$418 \cdot 4$	$488+1$	$557 \% 8$	10.78
	$78+9$	1463	2195	2929	3659	4390	5122	585\%	8585
$5{ }^{5}$	$70^{\circ} 7$	1534	$230 \cdot 1$	30638	3835	4002	5969	618 \%	0.803
	8073	$160 \cdot 6$	2409	$321 \cdot 2$	$401 \cdot 5$	48	$588 \cdot 1$	649×4	
	$85^{\circ} 0$	$188: 0$	25×0	3300	480%	$504{ }^{\circ}$	588.0	672.0	756%
	87×8	1757	2633	351.1	4389	5867	6144	7022	7900
5%	$91 \cdot 6$	185'3	27.49	3565	$458: 2$	$540 \cdot 8$	6114	733.1	8247
6		$191^{\circ} 1$	2867	$382 \cdot 2$	$477 \cdot 8$			764	
61	1037	$207+1$	3111	4148	518.5	628.2	72.5	8297	9833
T	112 c	$224+3$	3365	4486	5608	$673 \% 0$	7851	89773	10094
63	121.0	$241 \cdot 9$	3629	4888	6048	$725 \cdot 8$	8167	9776	10886
7	$130^{\circ} 0$	26011	$390{ }^{\prime} 1$	520/2	65012		9103		
$7!$	1385	2711	4186	5592	$697 * 7$	837.3	9768	$1116 \cdot 1$	12559
75	1495	2987	$448^{\circ} 0$	5978	$7.1{ }^{6}$	896	10453	11985	13140
7\%	$150 \cdot 5$	3189	4784	15378	79773	956	11169	12756	14851
8			5096	979\% 4		$1019{ }^{1}$	1189.0	1358.8	
	180%	361×1	519'1	7288	9035	10842	$126+12$	1445\%	16263
,	191.8	9836	595'4	7672	959.0	1150	18426	15345	
85	$203 * 3$	4065	6098	8130	10163		14228	16291	18293
9		4901	6454				15053		
93	227	4543	681^{-5}	$908 \cdot 6$	11358	1388.9	15800'1	1817*2	20444
94	2306	4792	7188	9584	11980	14976	16772	$1916 \cdot 8$	215
925	252%	505.8	7o\% 1	1009%	1261'9	1514.3	17668	$2010^{\circ} 0$	914
10	2660^{-3}	$532 \cdot 6$	7989	$1085{ }^{2}$	18314		$180+0$	21503	
104	2730	5578	836%	11157	$1391 \% 6$	15735	1952	22914	25103
104	293.7	$585 \cdot 4$	$873^{\circ} 1$	$1170 \cdot$	14634	$1756 \cdot 1$	2488	83415	+712
10\%	3068	8036	9204	12.72	1584.0	18408	21476	24514	21612
11	3212	6794	968%	$128: 9$	$1606^{\circ} 1$	1927"	22485		
1114	8350	6720	1009%	13440	16800	$2076 \cdot$	23520	2	0
11	351×1	7029	$1053 \cdot 3$	14044	17359	21066	24577		
11%	356	7851	1092 '6	14561	183 ± 7	2190\%	25658	90\%	8
12			11	1328					9

TADLE TH－ROUND TRON．

size．	10 ft	11 ft	12 ft ．	13 ft	14 ft	15 ft	16 ft ．	17 ft ．	18 ft ．
in	20s．	H．			los，				
5	6675	7313	$801^{\circ} 0$	8678	9345	10013	$1065^{\circ} 9$	11848	1201 ＇5
516	697．3	767.0	8368	9065	976.2	10460	11157	$1185{ }^{\circ} 4$	$1255 \cdot 2$
53	7317	8049	8781	$851^{\circ} 2$	10244	10976	1170＇8	1243－9	1317＊1
5 翟	767%	8437	820＇4	9971	1073＇8	11505	1227 2	13039	13806
	$803^{\circ} 0$	883.3	9636	$10 \pm 6^{\circ} 0$	11243	12046	12819	13652	14455
5	840.0	9240	1098＊	10920	11760	＇1280 0	1344°	14280	15120
	877.8	9685	10533	1141×1	12289	$1316 \cdot 6$	14042	I4922	15800
$5{ }^{2} 8$	916×3	1008%	$1099 \cdot 6$	$1191 \% 2$	12839	$1374{ }^{\circ} 5$	1466^{\prime}	15578	1649\％
6	955．5	$1051 \cdot 1$	1146	12424	13377				99
61	10370	11407	12114	13182	14519	1555	16393	17630	18667
66	$1121^{\circ} 6$	123388	$1345{ }^{\circ} 9$	14581	$1570{ }^{\circ} 2$	1042	17946	19067	20189
6等	1209×6	$1330 \cdot 6$	1451：5	1572.5	16934	18144	$1935 \cdot 1$	20563	21773
\％	$1300 \cdot 5$	$143 n 5$	156	16906	18907	19507	8		
73	13954	15350	1674	$1814{ }^{\circ} 1$	19536	20932	22327	2	18
咜	14933	16426	1791.9	$1941{ }^{\circ} 3$	2090%	229979	2389．	12538	26879
7 y	$1594^{\prime} 6$	17510	19135	$2072 \cdot 9$	2232：4	29918	2551－9	27108	2870＇2
8	$1698 \cdot 6$		20383	$2268{ }^{-1}$		47．8	27177		\％ 4
H1／4	1805°	19817	$2168 \cdot 4$	$23+9 \cdot 6$	2.297	27104	2891 1	7071 8	3 ± 52.5
54	19181	210999	$23: 117$	－1935	$2 \mathrm{~m} 55: 3$	3879.1	3068－9	326597	3452.5
B4\％	20326	22359	$2439 \cdot 1$	$2642 \cdot 4$	28456	30489	$3252^{4} 2$	$3455 *$	36587
9		23654	$2580 \cdot 5$	$2+955$	3010＇6	3225.6	3440＊6	3355	07
94	22.15	24987	2725 8	2953.0	3150	$3407 \cdot 3$	36844	3861.6	$1083 \cdot 7$
914	29960	－2635＊6	$2875 \cdot 2$	31148	835 14	$3504 \cdot 1$	3883 R	$1073 \cdot 2$	43128
			30285	3280%	35354	3785 ＇6	4038%	4290＇4．	43428
10	126629		3195%	$3461 \cdot 7$	37285	39943	$4260 \cdot 6$	45269	7793＊2
108	$12780 \cdot 2$	30082	$3347 \cdot 1$	36.60	39010	41839	4162^{-8}	47417	5020．6
109	29209	32196	3512×3	3C04＇9	$+19976$	1300：3	$1683^{\circ} 0$	19757	5268＇4
10．4．	30680	33746	36816	38884	$4295{ }^{\circ}$	$1602^{\circ} 0$	$4908^{\circ} \mathrm{g}$	521	35224
11	$3212{ }^{\circ}$	3533.4	$3854 * 6$	$4175^{\circ} 8$	4497＊	$8 \cdot 2$	S	507	
$111 /$	33600	36960	$4032^{\circ} 0$	$4368 \cdot 1$	1701－1	$5010{ }^{\prime} 1$	53761	$5712 \cdot 1$	$6048 \cdot 1$
1115	35110	386.1	12132	4564－4．	40155	5206． 0^{6}	50197	$50 \times 3 \cdot 8$	83199
113	$3665 \cdot 4$	40815	$4398{ }^{-4}$	$4765^{\circ} 0$	5131.5	$5498{ }^{\circ}$	5861＇6	$6231 \cdot 1$	65976
12	3822＇1			48087	込			（195	68707

TABLE IIT-FIATIHON.

Thick.	Width.	1 nt		3 ft	4 ft	5 ft	6 ft .	7 ft .	8 ft	9 ft
ins.	ins.	Ibs.	1 lb	lbs.	lbs.	Ibs.	libs	lbs.	lbs	s.
1/4		08 1.1		${ }_{2}^{2.5}$	3.4 4 4 4	42	54.1	$5 \cdot 9$	6.8	\%
		11.1		3.2 3 8	4\%2	53 673	${ }_{7}^{6 *}$	74	84.4	94
"	13/4	15	50	4	59	63	76 89	89 104 108	10.1 118	114
3	,	17	$3 \cdot 4$	51	6.8	85	$0 \cdot 1$	11'8	13	$15 \cdot 2$
3	$2{ }^{24}$	1.9	338	$5 \cdot 7$	76	95	11.4	$13 \% 3$	15	171
"		$\stackrel{\text { 2 }}{ }$	$4 \cdot 2$	63	$8^{8} 4$	$10 \cdot 6$	127	148	169	190
3	2 ,	23	46	70	93	11.6	$13 \cdot 9$	$16 * 3$	$18^{\prime} 6$	209
"		25	$5{ }^{5}$	7%	10.1	127	152	177	203	229
3	81		5	8	$11+0$	137	16.5	${ }^{19-2}$	220	247
3	3	30 32	59 68	89	118	148	178	207	23	266
	3	3\%	6 '8	10'1	135	169	203	7	270	4
3	41	36	72	108	14.4	18%	21.5	251	28	32.4
"	埇	38	$7{ }^{7} 6$	114	152	190	228	$26^{*} 6$	$30 \cdot 4$	31.8
"	43	$4{ }^{\circ}$	S^{+}	$12^{\prime} 0$	16.1	20.1	24.1	28.1	$32 \cdot 1$	$36 \cdot 1$
\%	5.	42	8.4	127	169	$21 \cdot 1$	$25 \cdot 3$	${ }^{20} 6$	3518	38°
"	515	4.4 46 4	89 98	133 139	${ }^{177}$	$\begin{aligned} & 282 \\ & 2892 \end{aligned}$	267 279	31.1	55^{5}	39-9
	5\%		97	$14 / 6$	194	243	29.2	$31^{\circ} 0$	389	418
	6	5.11	$10 \cdot 1$	$15 \cdot 2$	203	$25:$	30%	355	406	5%
拖	1.		25	38	5.1	63	76	89	$10 \cdot 1$	$11 \cdot 4$
	$11 / 8$		3.8	48	63	\%	95	$11 \cdot 1$	127	143
	1119	19	38	57	76	95	114	138	152	$17 \cdot 1$
"	13	22	44	67	85	111	133	15%	177	$20^{\circ} 0$
	\%	2.5	$5 \cdot 1$	76	$10 \cdot 1$	127	$15 \cdot 2$	177	203	$22 \cdot 8$
	${ }^{24}$			83 95	127	$\begin{aligned} & 143 \\ & 158 \end{aligned}$	190	$\begin{aligned} & 2400 \\ & 22^{2}-2 \end{aligned}$	25\%	257
	2.	3'5	70	105	139	174	209	24.4	279	28.4
	3	38	76	114	$15^{\circ} 2$	19%	228	$26^{\prime} 6$	30^{-4}	
"	34		8.2	124	165	$20 \cdot 6$	247	$28^{\prime} 8$	330	$37 \cdot 1$
	32	44	89	133	177	22.2	266	$31 \cdot 1$	355	399
"	$3{ }^{2}$	48	95	143	19.0	238	$28^{\circ} 5$	333	3 S 0	428
	4.	$5 \cdot 11$	101	152	20-3	$25 \cdot 3$	30.4	35.5	$40 \cdot 6$	456
	45	54	108	16.1	21.5	269	323	377	43.1	485
"	4		11.4	171 18.1	288	28%	348	399	45	51.3
3	46			18.1	24.1	30^{1}			$48^{\circ} 2$	54.7

TABLE IIt, FLAT TRON.

hick.	Wiath.	loft.	110	12 f	13 ft	14 ft .	15 ft .	16 ft .	17 ft	18 ft
	ins.	lbs.	$\overline{\text { Ibs. }}$	lbs.	lise.	$\overline{1 \mathrm{lbs}}$	lbs	$\overline{\mathrm{lbx}}$		lbs,
	$11 / 4$	$10 \cdot 6$	118	127	137	148	158	169	179	${ }^{19} 0$
"	15	127	139	$15^{\circ} 2$	$16 \cdot 5$	177	190	2003	215	228
"	13	14.8	163	177	192	207	22^{2}	23.7	251	26.6
	9	169	$18 \cdot 6$	$20 \cdot 3$	22.0	297	25.4	270	287	$30 \cdot 4$
\%	24	190	209	22.8	247	$26^{\circ} 6$	$28^{\circ} 5$	$30 \cdot 4$		34.2
3	215	21.1	232	${ }^{2573}$	27.5	29.6	31	33	359	380
"	2%	232	256	279	302	385	34.9	372	29.5	418
	3	253	27.9	$30 \cdot 4$	33.0	355	38.0	$40 \cdot 6$	43:1	'6
-	3	$27 \cdot 5$	30^{-2}	33.0	357	385	$41 \cdot 3$	43.9	467	49.4
3	314			35%	$38 \cdot 5$	414	44.4	47	50	538
*	3\%	7	349	$38^{\circ} 0$	$41^{\prime} 2$	444	$47^{*} 5$	50	539	57%
\%	4	338	372	408	439	47-3	507	541	57.5	$60 \cdot 8$
3	415	359	39.5	43\%1	467	50.3	539	57.5	61.9	65°
*	4%	88.0	418	${ }^{45}{ }^{\text {c/ }}$	49.4	53.2	57.0	$60 \cdot 8$	646	68.4
"	48\%	40'1	44-1	48.2	52-2	562	60^{-2}	642	68	722
"	5	$12 \cdot 2$	46.5	7	549	59.1	[3.4	65.6	71.8	769
$\stackrel{\square}{7}$	${ }^{516}$	4	$48 \% 8$	532 558	577 $60 \cdot 4$	68. 6	${ }^{685}$	71.0	75°	78.9
7			311	55	$60 \cdot 4$	${ }^{651}$	${ }^{69} 7$			836
'	3.6	186	534	${ }^{\text {®*3 }}$	632	68.0		77		875
"	6	507	$55 \cdot 8$	60'8	659	709	76.0	81.1	86.9	$91 \cdot 2$
$\%$	1	127	13.9	$15 \cdot 2$	165	177	10°	203	$21 \cdot 5$	22.8
"	114	$15 \cdot 8$	$17 \cdot 4$	100	20.6	222	28'8	$25 \cdot 3$	$26 \cdot 9$	$25^{2} 5$
"	13/1\%	190	209	228	247	266	28.5	$30^{\circ} 4$	$32 \cdot 3$	34.2
"	11/4	$22^{2} 2$	24:4	264	28•8	$31^{\prime} 1$	33.3	35	377	999
n	${ }_{2}^{2}$	25.3	279	304	33.0	355	$38^{\circ} \mathrm{O}$	40.6	43.1	45.
\cdots	${ }_{8}$	815	31.4	342	$37 \cdot 1$	399	42.8	456	48.5	513
"			349		41^{-2} 45	44.4	47.5 32.3	${ }^{30} 7$		67
3	2%	9	363	118	45\%	488	32-3	55 '8	$50 \cdot 3$	627
"	3	38.0	41.8	$45+6$	494	532	57.0	$6{ }^{6} \cdot 8$	$64 \cdot 6$	68.4 7.12
$\ddot{7}$	33	412	453	494	3876	577	${ }^{61-8}$	6^{659}	700	7142
"	34	44.4	$4{ }^{\text {4\%8 }}$	53.2	577	$6{ }^{621}$	685	$71^{\circ} 9$	75.1	799
"	3\%	47.5	52×3	57%	61.8	66^{2}	71\%	$76{ }^{\circ}$	808	85.5
n		507	5578	$60-8$	65.9	$70-9$	76.0	81.1	862	912
0	1.4	53.9 57.0	$\begin{aligned} & 593 \\ & 627 \end{aligned}$	647			50.8 85.6	80*2	918	970
${ }^{3}$	4*	1002	68\%	${ }^{688}$	742 783	+ 799	850'6	903	97.	108\%

TABLE IIL, PLAT IGON.

Thick.	Widt	1 ft	2 f .	3 ft .	4 ft .	5 f	6 ft .	7 ft	8 ft	
		lbs			lbs	5.	8.	S.		
\%		63			253	${ }^{317}$	380 399	4	17	
"	54	67	133	200	266	${ }_{34}^{33}$	399	46%	-2	
"				10	27	342	41			
"	5%	78	14.6	21	29.	36	43	51	58.3	65
	6	76	15%	$22 \cdot 8$	$30 \cdot 4$	38.0	$45 \cdot 6$	53\%	608	63.4
3		17	34	$5 \cdot 1$	8	$8 \cdot 5$	$10 \cdot 1$	11.8	13.5	15.2
3	14	2.1	4.	63	8.4	106	${ }^{127}$	148	169	19.
"		2.5	5.1	76	101	127	152	177	${ }^{203}$	
"	13	3.0	$5 \cdot 9$	89	118	148	177	207	237	26.
	$\stackrel{2}{2}$	$3 \cdot 4$	68	$1{ }^{101}$	135	169	$20 \cdot 3$	237	. 0	$30 \cdot 4$
"	2	3.8	76		15.2	19°	228	${ }^{26 \cdot 6}$	30.4	34.
"		42	8.4	127	${ }^{169}$	${ }_{22}^{21.1}$	253	296	33.8	$3{ }^{\circ}$
"	2*	46	93	139	$18 \cdot 6$	23.2	279	$32 \cdot 5$	37.2	18
n		5.1	10^{1}	$15 \cdot 2$	$20-3$	$25 \cdot 3$	$30 \cdot 4$	5	6	5.
"		$5 \cdot 5$	11.0	165	230	275	32.9			
	33	5.9 6.3	1118	177	237	29.6	S8 0	41.4	40^{47}	57.
"			127		253	317				
	4	6.8	13.5	$20+3$	270	838	$40 \cdot 6$	3	4.1	60°
"	44	72	144	$21 \cdot 5$	${ }^{2} \cdot{ }^{\circ}$		${ }^{43.1}$	50.3	${ }_{60 \cdot 8}^{57.4}$	
	446	76	$15{ }^{2}$	228	$30 \cdot 4$	$38^{\circ} 0$	$45 \cdot 6$	${ }_{5}^{53} 5$	$60 \cdot 8$	68
*	$4{ }^{4}$	8.0	161	241	321	40%	48\%	56	642	
*		$8 \cdot 4$	169		388	2	507	1	76	$7{ }^{7}$
3		89	177	26.8	$33^{5} 5$	44.4	${ }_{55}^{53}$		71.	
"	5\%	93	$18^{*} 6$	279	37	${ }^{48^{\circ} 5}$	558 58.3	65s ${ }^{6}$		
"	5%	97	194	292	58'9					
\#	6	$10 \cdot 1$	$20-3$	304	$40 \cdot 6$	$50 \cdot 7$	$60 \cdot 8$	$70 \cdot 9$	$8{ }^{1} 1$	
烈		21	-2	67	8.4	1078	127	148	169	19
	134	$2 \cdot 6$	53	79	106	13.2	$15 \cdot 8$	18.5	21.1	
"	1/1/4	3.2	63	9.5	127	15.8	19.0	222	25.4	
3	$1{ }^{4}$	37	74	$1{ }^{-1}$	14.8	18	22	25		
		42	8.4		169	21.1	${ }^{25} 5$	296		38°
"	2\%	8	9.5 10	143	${ }^{19} 1.1$	28'8	28.5	37.0		47
"	2	58	11.6	17.4	${ }_{232}^{211}$	22^{26}	317		42.	
	3	3	127	190	'3					
",	31	69	137	206	275	$34-3$	$41^{\prime 2}$	48°	54.9	
	3/4	74	118			5)	12	51	592	

TAMLE IIT.-FLAT IRON,

Thiek.	Width.	10 ft	11 ft	12,5	13ft. 1	14 ft	15 ft .	16 ft	17 ft	15 ft
In.	Ins.	1bs.	1bs,	Ithes.	Ibs.	Ibs.	1bs,	Ths,	thes,	11 s
3	5	635	697	760	83.4	$88^{\prime} 7$	5501	101:4	1077	114%
58	516	655	752	79×8	855	93'1	99.81	106.51	$118{ }^{\prime} 1$	$119 \cdot 8$
3	$3{ }^{3}$	697	767	$89+7$	$90^{\prime} 6$	97.6	10451	$111-5$	$118 \cdot 5$	195
37	$5{ }^{5}$	729	802	875	9177	10920	109'3	1160	1284	131%
*	6	760	82.6	91*2	$98 \cdot 91$	$106 \cdot 5$	14^{+1}	1917	1848	$196 * 9$
36	1	169	187	$20+3$	$22-0$	237	25×4	$27^{\prime} 0$	2×17	904
33	114	$21: 1$	23.	253	275	29.6	317	338	359	38+0
3	13	453	979	$30+4$	39\%0	$35 \cdot 5$	580	406	481]	158
n	17	296	52.5	55	3385	$41^{1} 4$	444	47ㄴ․	$50 * 3$	$525+8$
37	2	$33 \cdot 8$	$37^{\circ} 2$	408	437	473	307	$54 \cdot 1$	57*)	50-3
33	915	38.0	$41 \cdot 8$	$45^{\circ} 6$	49^{-4}	589	570	$60 \cdot 8$	61'ti	68'4
38	246	42.2	46%	507	549	591	63.4	$65 \cdot 6$	71'8	760
33	2%	465	$51^{\circ} 1$	$55 \cdot 8$	604	651	697	$74 \cdot 4$	790	8946
p	3	507	558	$80 \cdot 9$	659	$70 \cdot 9$	76.0	$8 L^{\circ} 1$	85.2	01*2
	814	$54-9$	604	$65 * 5$	714	769	89^{-4}	b79	933	984
\%	33	5902	651	710	769	82.8	857	$9+6$	1006	1005
33	3 4	633	$62 \cdot 7$	760	8241	887	$95 \cdot$	101\%4	1077	1146
${ }^{31}$	4	67.6	$74: 4$	$81 \cdot 1$	859	915	101:1	$108 \cdot 2$	1147	1217
13	415	$71 \cdot 8$	79.0	86	98:4	1005	1077	114	122 1	129%
n	43/6	$7{ }^{7} 70$	83.6	912	188*9	1065	114	1217	1293	1361 !
13	4.6	8073	883	953	104'3	1124	120 12	198'1	1136 -	1445
\#2	5	845	$92 \cdot 9$	101'4	109	11	1907	135	1436	152-1
3	54	887	$97 \cdot 6$	1085	1154	124.2	139.]	$142 \cdot 0$	1508	1597
11	58	$95^{\circ} 0$	$102+2$	111"5	120'8	1501	$139 \cdot 4$	148	158%	$167 \cdot 3$
3	531	$97 \cdot 2$	106^{*}	$116^{*} 6$		1960	$145+8$	155*5	$165 *$	1749
*3	6	101:1	1115	1217	13	141.9		1168	172.4	1825
38	1	21*1	24*9	$25 \cdot 3$	275	296	317	38.8	- 35%	380
91	14	26.4	27.0	S17	343	370	5	42*2	419	475
*	11/5	317	$31 * 3$	38.0	4122	444	47-5	90-7	539	570
9	14	37.0	10.7	$44^{\prime 4}$	$48 \cdot 2$	518	$55^{\prime \prime} 3$	59*2	62%	$66^{\prime} 5$
*)	2	422	485	$50 \cdot 7$	5 ± 9	5.91	68-4	67-6	71:8	760
3	2 y	475	$52 \cdot 3$	570	618	3. 66.5	713	760	5018	85\%
${ }^{17}$	256	528 50.1	$55^{\prime} 1$	6334	想6	3 739	79*2	84+5	8) 8	950
*	29\%	$58 \cdot 1$	63")	69-7		81:	$57^{\prime} 1$	1 92-g	9847	1045
83	3	63.3	657	$76^{\circ} 0$		- 887	950	101*4	1077	1140
5	36 $31 / 2$	$68^{4} 7$	$75 * 5$	$82 \cdot 4$	8933	3.961	11080	1095	1167	1236
*	$31 / 2$	739	51'9	88:7	4, $90^{\circ} 1$	1035	51109	.11843	3,1257	138:1

TADLE IIL-PLATIRON,

2hick.	Wid	1 ft .	f.	3 ft .	6 ft .	5 fl .	6 f	7 ft .	8 ft .	f
$\begin{aligned} & \text { ing, } \\ & \text { y } \end{aligned}$	$\begin{aligned} & \text { ins. } \\ & \text { ay } \end{aligned}$	$\begin{gathered} 16 s \\ 7.9 \end{gathered}$	158	$\begin{gathered} \text { loss. } \\ 238 \end{gathered}$	$\begin{array}{\|l\|} \hline 1 \mathrm{bs} \\ 317 \\ \hline \end{array}$	$\begin{aligned} & \text { lbs. } \\ & 396 \end{aligned}$	$\begin{aligned} & \mathrm{lbs} \\ & 475 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{lbs} . \\ & 55 \cdot 5 \end{aligned}$	$\frac{\mathrm{lbs} .}{634}$	$\overrightarrow{713 x}$
	4.	8.4	169	$25 \cdot 3$	338	42.	$50^{\circ} 7$	59.1	676	\%
	is	$9 \cdot 0$	18°	269	359	44.9	539	$62{ }^{629}$	$71 \cdot 8$	8
	414	95	190	285	$35^{\circ} 0$	47%	570	$66^{\circ} 5$	76.1	85%
	$4{ }^{4}$	$10^{\circ} 0$	20^{+1}	$30^{\circ} 1$	40.1	$50{ }^{2}$	$60 \cdot 2$	70	803	-3
		108	211	317	423	528	4	739	84.5	951
		${ }_{11}^{11.1}$			$4{ }^{4} 4$	$55^{\circ} 5$	$66^{\prime} 5$	${ }^{776}$	887	-8
	5	${ }_{12}^{11-1}$	245	349	$48^{\prime} 6$	${ }_{60}{ }^{\circ}$	729	$8{ }^{81.3}$	929	- 3
	6	127				63\%	76.0	887		
3		$2 \cdot 5$	511	76	$10^{\prime 1}$	127	15	177	203	22-8
"	116	$\begin{aligned} & 32 \\ & 38 \end{aligned}$	$\begin{gathered} 63 \\ 761 \end{gathered}$	-9'5	127	$15^{\circ} 8$ 19	190 29.8	$22 \cdot 2$ 268	$2{ }^{25} 4$	12
"		44	89	135	178	192	26.	${ }^{26.1}$	30°	39
"						25.3	0\%	35.5	406	45\%
μ	$\stackrel{2}{9}$	57	114	171		$28^{\circ} 5$	$34 \cdot 2$	399	45.6	$51-3$
"		673	127	190	253	31.7	38.0	444	50.7	57%
"	2%	70	139	$20 \cdot 9$	27.9	319	41.8	488	558	7
	3	76	$15 \cdot 2$	228	$30 \cdot 4$	$38^{\circ} 0$	456	53.2	70.9	68.4
"	20	8.9	15.	247	3350	41.2	49.4	577	659	749
"			177	$26^{2} 6$	$35{ }^{3} 5$	$44^{\circ} 4$	53.9	62^{*}	71°	9
n	36	9.5	$19{ }^{\circ}$	83	380	475		$6{ }^{6}$		85%
	4	101	203	4	406	${ }^{507}$	${ }^{60} 8$	70×9	$8{ }^{81} 1$	${ }^{912}$
"	4	$\begin{aligned} & 108 \\ & 114 \end{aligned}$		3	$43 \cdot 1$ 45	539 570	$64 \cdot 6$ 684	$75^{\circ} 4$	862 913	
"	48	120	24-1	34-1	482	60^{-2}	72	79.9 813	963	S 4
		127		0	507	$63^{+}+$	70°	97	1014	14°
	54	13'3	26%	399	532	605	798	$93 \cdot 1$	1065	198
"		13%	279	41.8	558	637	837	976	11.5	253
"	53	146	29.1	$43 \cdot 7$	583	729	87	$102^{\circ} 0$	6	131
	6	15.2	304	$45 * 6$	608	760	1-2	106:3	21.7	369
1	36	$5 \cdot 1$	101	152	203	$25 \cdot 9$	$30^{\prime} 4$	35.5	$40^{\prime} 6$	45^{6}
"	2	6.8	135	203	27.0	33\%	4096	478	54	${ }^{61 \%}$
n	3	13.1							81.1	
"	5	16.9			51.	315	$101 \cdot 4$	183	5%	${ }_{22} 2^{-1}$
\%	6	203								

TABLE IIT,-FLAT IRON.

Thick.	Wi	10 ft .1	11	12 ft	13 f	14 ft .	$15 f$	16 ft .	17 ft .	18 ft
fins	$\begin{aligned} & \text { ins. } \\ & 3 x \end{aligned}$	$\begin{aligned} & \mathrm{lbs} \\ & 792 \end{aligned}$	$\begin{aligned} & \mathrm{lbs} \\ & 87 \cdot 1 \end{aligned}$	$\begin{aligned} & \mathrm{lbs} \\ & 95.1 \end{aligned}$	$\begin{gathered} 1 \mathrm{ts.} \\ 103^{\circ} 0 \end{gathered}$	$\begin{gathered} \text { lbs. } \\ 110^{-9} 9 \end{gathered}$	$\begin{array}{\|c} \hline \text { Ihs } \\ 9118: 8 \end{array}$	$\begin{aligned} & \text { lbs } \\ & 1268 \end{aligned}$	$513 \mathrm{lbs}$	$\begin{aligned} & 1 \mathrm{bb} \\ & 142 \% \end{aligned}$
	4	843	$92 \cdot 1$	1014	109	1183	1267			
	416	898	98.8	1078	1187	1257	1347	14	1528	
"	48	95°	10461	1141	1236	133.1	1429	1521	161.6	$171 \cdot 1$
"	43						1503	160	170	$130 \cdot 6$
"	5	1056								1
"	56	1109	12201	1	1	1553		. 5		96\%
"		1162	1278							
"	58	1215	1836	1457		70				
	6					1774	$190{ }^{\prime} 12$			8.1
3	1	253	279	304	390	353	380	$40^{\circ} \mathrm{E}$	481	456
"	16	,	340	38.0	$41 \cdot 2$	44.4	473	50	539	570
"	15	380	418	45%	424	53.2	570	608	64.6	
3	1%	4.4	48.8	539	577	$62 \cdot 1$	665	21.0	754	799
	$\frac{2}{21}$	507	8	$68 \cdot 8$	659	709	760	81.1	80^{-2}	912
"	24	570	68.	68.4	742		856			
"	29	633	697	$7{ }^{7} 9$	$8{ }^{82-4}$	837		1014		
"	$2{ }^{1}$	69	767	837	$90^{\circ} 6$	97.6		5		
"	3	760	836	$91-2$	9891	$106 \cdot 5$	1141	1	12931	369
3	34	88.4	906		07.11	$12 \cdot$	$183 \cdot 1$			
"	34	887	976	$105^{\circ} 5$	$15 \cdot 4$	1242	$183 \cdot 1$		15078	
	4									
	14	1077	1185	1293	$40 \cdot 1$	1508	1616			
	4%	114.1	125.5	109	14831	1597	171	285		53
,	45	$120 \cdot 4$	$132+1$	4451	$158^{\circ} 5$	168%	18061			167
"	5		$199 \cdot 4$							228:1
"		133.1	15041		17301					
		1394	1553	1673	1818	90	-			509
"	53	1457	16031	174.9	189.5	2040	2186	2	2478	
	6	$152 \cdot 1$	10731			9	281			37
1	${ }^{146}$	507	558		659					
	$\frac{2}{3}$	676	74.4	81.1	879					
	3	1014	1115	1217	13181		15211			2.5
"	4	1352								33
"	6									
	6									0

The tables are all calculated to the nearest tenth of alb. To the weights of hars of wrought iron, add Ido part for bars of soft steel; and from the same weights, subtract $\frac{1}{2} 7$ part for bars of cast iron. In order to render these tables applicable to bars of other metals, of the same dimensions, the following tablet of multipliers is added.

Metala,	Multipliers.	Metals.!	Maitipliers-
Iron, east	Whif	Brass, cast	1.078
Steel, soft	1006	Du. wire	1608
Do. hardened	1007	Tin, cast	-986
Do. Leuppered	1008	Zine, do.	-923
Copper, cast	1-129	silver, do.	1345
Do, wire	1.140	Gold, do.	2×473
Lead, molten	1.158	Platinum, do.	2.504

TABLE IV, METAL PLATES.
This table shows the weight of a square foot of different metal plates, of thicknesses from one sixteeuth of an inch to one inch, advancing by a sixteenth.

Six- teonthe.	[Wrougby	Cant Irous.	Cast	$\begin{array}{\|c\|c\|} \hline \text { Cast } \\ \text { Benas. } \end{array}$	$\begin{array}{\|c\|} \hline \text { Cast } \\ \text { Loud. } \end{array}$	$\left\|\begin{array}{c} \text { Cast } \\ \text { Zine. } \end{array}\right\|$	$\begin{aligned} & \text { Cust } \\ & \text { Tin. } \end{aligned}$	$\begin{aligned} & \text { Chat } \\ & \text { silver. } \end{aligned}$
	lbs,	lbas.	lbs .	lbs.	1bs.	lbs.	Ibs.	S.
1	25	23	$2 \cdot 9$	27	37	$2: 3$	24	34
2	$5 \cdot 1$	47	57	55	74	47	47	68
3	76	770	$8{ }^{8}$	89	$11 \cdot 1$	70	7.1	109
4	$10 \cdot 1$	24	$11 \cdot 4$	11.0	148	94	9.5	136
5	127	$11 \cdot 7$	14.3	137	18.5	117	11.9	170
6	152	140	172	164	22.2	140	142	20.5
7	179	16%	200	198	259	164	186	239
8	203	18.8	229	219	295	18.7	19.0	273
9	22.8	21.1	257	24.6	332	$2{ }^{1 / 1}$	214	307
10	954	$23 \cdot 5$	28.6	274	369	23.4	28.7	$3{ }^{3} 1$
11	27.9	25.8	31%	$30 \cdot 1$	40%	257	$26 \cdot 1$	37.5
12	30.4	28.1	34-3	329	443	28.1	285	409
13	328	305	372	35*6	48%	30'4	309	463
14	35.5	3299	400	383	517	328	38:2	477
15	380	352	429	$41-2$	55.4	S5.1	356	51.1
16	40 E	376	458	43.9	591	375	380	अच

TABLE サ.——AST METAT BALLS.

Diam.	Iron.	Copper.	Brass.	Lead.
ins.	lbs.	lbs.	lbs.	lbs.
1	$\frac{3}{2 / 2}$	$\frac{3}{6}$	$\frac{3}{0}$	$\frac{3}{14}$
2	$1 \cdot 1$	$1 \cdot 3$	$1 \cdot 3$	$1 \cdot 7$
3	$3 \cdot 7$	$4 \cdot 5$	$4 \cdot 3$	$5 \cdot 8$
4	$8 \cdot 7$	$10 \cdot 7$	$10 \cdot 2$	$13 \cdot 8$
5	$17 \cdot 0$	$20 \cdot 8$	$19 \cdot 9$	$26 \cdot 9$
6	$29 \cdot 5$	$35 \cdot 9$	$34 \cdot 3$	$46 \cdot 4$
7	$46 \cdot 8$	$57 \cdot 1$	$54 \cdot 5$	$73 \cdot 7$
8	$69 \cdot 8$	$85 \cdot 2$	$81 \cdot 4$	$110 \cdot 1$
9	$99 \cdot 4$	$121 \cdot 3$	$115 \cdot 9$	$156 \cdot 7$
10	$136 \cdot 4$	$166 \cdot 4$	$159 \cdot 0$	$215 \cdot 0$

TABLE VI. - CAST METAL CYLINDIERS.
The cylinders are solid, each one foot in length.

Diam.	Iron.	Copper.	Brass.	Lead.
ins.	lbs.	$1 \mathrm{bs}$.	lbs.	lbs.
1	$2 \cdot 5$	3.0	$2 \cdot 9$	3.9
2	$9 \cdot 8$	$12 \cdot 0$	$11 \cdot 4$	$15 \cdot 5$
3	$22 \cdot 1$	$27 \cdot 0$	$25 \cdot 8$	34.8
4	$39 \cdot 3$	$47 \cdot 9$	$45 \cdot 8$	$61 \cdot 9$
5	61.4	$74 \cdot 9$	716	$96 \cdot 7$
6	$88 \cdot 4$	$107 \cdot 8$	103.0	139:3
7	120.3	$146 \cdot 8$	140.2	$189 \cdot 6$
8	$157 \cdot 1$	$191 \cdot 7$	$183 \cdot 2$	247.7
9	$198 \cdot 8$	$242 \cdot 7$	$231 \cdot 8$	$313 \cdot 4$
10	$245 \cdot 4$	$299 \cdot 5$	286.2	387%

TABLK VII. - CAST IRON PIPES.
This table shows the weight of pipes one foot long, of bores from 1 in , to 12 in . diameter, advancing by $\frac{1}{4} \mathrm{in}$. ; and of thicknesses from $\frac{1}{4} \mathrm{in}$. to $\frac{1}{4}$ in., advancing by $\frac{1}{6}$ in.
table til.-cast iron pipes.

re.	3	\%	15	\%	令	8	1	11/8	$1 /$
In.	lbs			Jbs.	bs,		Ibs,		
1									
	37	60	8.6	11.5	147	183	29.1	269	07
	43	69	9.8	130	$16 \cdot 3$	204	24.5	290	337
	49	78	111	146	18.4	22*6	270	318	36.8
2	55	8 8'8	123	${ }^{16 \% 1}$	$20 \cdot 3$	247	29.5	34.5	399
	61	97	135	176	$22 \cdot 1$	268	319	37.3	430
	67	$10^{\circ} 6$	14'7	$19^{\circ} 2$	23.9	259	$34 \cdot 4$	400	460
	$7 \cdot 4$	115	16.0	20.7	257	$31 \cdot 1$	368	428	$49 \cdot 1$
3	80	12.4	$17 \cdot 2$	29-2	27.6	333	393	456	32*9
	86	133	184	23-8	${ }^{29} 5$	354	417	483	552
	92	$14{ }^{-2}$	196	253	313	376	442	$51^{\prime} 1$	583
	$9 \cdot 8$	152	209	26.9	331	397	46.6	53×8	$1 / 1$
4	104	16.1	$22 \cdot 1$	28.4	$35^{\prime} 0$	$41: 9$	$49 \cdot 1$	566	$64 \cdot 4$
	11.1	17.1	$23 \cdot 4$	30.0	369	44'1	516	594	76
	117	$18^{\circ} 0$	245	31.4	387	$46^{\circ} 2$	540	$62^{\prime} 1$	06
	12*3	18.9	25.8	$33^{\circ} 0$	405	483	565	649	36
	129	198	27.0	345	423	50's	589	67.6	67
	13.5	$20 \cdot 7$	282	361 37	442	526	614	704	98
5.4	14.1	21.6	295	376	46.0	518	638	732	898
5%	147	22.6	507	${ }^{39} 1$	47%	569	663	760	59
	153	23:5	319	$40 \cdot 7$	497	$59^{\prime} 1$	687	787	$8 \cdot 9$
	160	244	331	48.2	515	$61 \cdot 2$	712	$81-2$	20
	16.6	25:3	344	43%	634	$63 \cdot 4$	73.4	812	$5 \cdot 1$
6	$17-2$	262	856	$45 \cdot 3$	55\%2	65'3	$76 \cdot 1$	870	982
	178	272	368	468	545	677	78.	897	1012
	184	$28^{\circ} 1$	381	481	389	$69 \cdot 8$	814	92.5	1043
716	$19 \% 0$	29.0	391	49.9	607	220	815	95.3	107.4
2\%	19.8	297	405	514	62.6	24 1	85.9	880	1105
8	200	$30 \cdot 8$	417	52.9	64*	762	88.4	1008	1135
	204	317	$43^{\circ} 0$	345	663	784	$90 \cdot 8$	1035	1166
	217	329	$44^{\prime \prime} 4$	562	683	80.8	985	1065	1199
8%	$22 \cdot 1$	33.6	454	5.5	70.0	897	957	1094	1227
9	$2 \cdot 27$	345	466	59.1	71.8	848	98-2	1118	$125 / 8$
	283	$35 \cdot 1$	479	60-6	736	87.0	1006	114.6	1289
9\%	283	36.4	491	691	75.5	89.1	1083'1	1174	1319
95	24%	273	503	63-7	773	913	1055	120.1 $120-8$	135\%
10	252	38%	51.5	$6{ }^{6} 2$	792	934	$108^{\circ} 0$	122	$138 \cdot 1$
1014	258	$59]$	598	$63^{\prime} 7$	81.0	956	1104	125%	1417
101/	264	40.0	$54^{\prime} 0$	683 698	888	977	11829	1934	144.9
10\%	270	410	552	698 $71-3$	847	999	1154	1312	1473 $150-3$
11	27%	419	565	71.3	865	102.0	1178	1339	150-3
11	282	428	$57 \cdot 7$	729	88.4	104:2	1203	1385	158.4
	28.8	437	53.9	$74 \cdot 4$	$90 \cdot 2$	1063	128.7	13974	156.4
314	295	44.6	601	$75-9$	920	1085	$125 * 2$	142.	1595
28	3011	$45^{\prime} 6$	614	775	9376	$110 \cdot 6$	1276	$155^{\circ} \mathrm{U}$	1626

11.-SPECIFIC GRAVITY AND WEIGHT OF

MATERIALS.

TABLE L-METALS.		$\left\|\begin{array}{l} \text { Epecific } \\ \text { Gravity. } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Wt. of } \\ 1 \text { cub. } \mathrm{ft} . \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { Wt of } \\ 1 \text { cub, in. } \end{gathered}\right.$
Antimony, cast		ozs. 6702	lbs. $418 \cdot 9$	$\begin{gathered} 02 \\ 3 \cdot 878 \end{gathered}$
Arsenic, -	- -	5763	360-2	3-335
Bismuth, east	- -	9822	$613 \cdot 9$	5-684
Brass, cast	- -	8396	524.8	4.859
Brass, wire		8544	534.0	$4 \cdot 944$
Bronze,	-	8222	$513 \cdot 4$	$4 \cdot 753$
Cobalt, cast		7811	488.2	$4 \cdot 520$
Copper, cast	-	8788	549'3	$5 \cdot 086$
Copper, sheet		8915	557-2	$5 \cdot 159$
Copper, wire		8878	$554 \cdot 9$	5-136
Gold, pure	- -	19258	$1203 \cdot 6$	11-161
Gold, hammer		19362	$1210 \cdot 1$	$11 \cdot 205$
Gold, standard		17647	1102.9	$10 \cdot 213$
Gun, metal		8784	549-0	$5 \cdot 083$
Iron, bars wro	ght	7786	486.6	4.506
Iron, cast	- -	7207	$450 \cdot 4$	4-171
Lead, cast	-	11352	$709 \cdot 5$	$6 \cdot 569$
Mercury, solid	-	15632	977.0	$9 \cdot 046$
Mercury, fluid		1.3568	848.0	$7 \cdot 852$
Nickel, cast	- -	7807	487.9	$4 \cdot 518$
Platinum, pure		19500	1218.8	$11 \cdot 285$
Platinum, hammered		20336	1271.0	11.767
Silver, pure	- -	10474	654.6	6.061
Silver, hamme	red	10511	$656 \cdot 9$	6.083
Silver, standar		10534	$658 \cdot 4$	6.096
Steel, tempered		7818	488.6	4.594
Steel, soft	- -	7838	$489 \cdot 6$	4338
Tin, cast -	-	7291	$455 \cdot 7$	$4 \cdot 244$
Type metal	- -	10450	$653 \cdot 1$	$6 \cdot 047$
Zinc, cast	. -	7190	$449 \cdot 4$	$4 \cdot 161$

	Bpecific Gravity.	$\left\|\begin{array}{c} \text { Wt. of } \\ 1 \text { cub. ft. } \end{array}\right\|$	$\begin{aligned} & \text { Wt. or } \\ & 1 \mathrm{cub} . \text { in. } \end{aligned}$
		㖪	
Basaltes (Giant's causeway)	2864	$179 \cdot 0$	$1 \cdot 657$
Basaltes, prismatic	2722	$170 \cdot 1$	1.575
Borax -	1714	107*1	0.992
Brick	2000	125.0	$1 \cdot 157$
Chalk, mean of 3 sorts	2767	172.9	1.601
Coal, mean of 4 sorts	1270	$79 \cdot 4$	$0 \cdot 735$
Cutler's stone	2111	131.9	1.220
Emery, -	4000	250.0	$2 \cdot 315$
Flint, mean of 4 sorts	2588	161.8	$1 \cdot 498$
Freestone, meau of 5 sorts	2452	153.3	1.419
Gypsum, opaque	2168	$135 \cdot 5$	1-255
Granite, mean of 14 sorts	2698	$168{ }^{\circ} 6$	$1 \cdot 561$
Grindstone	2143	$133 \cdot 9$	1-240
Hone, white	2876	$179 \cdot 8$	$1 \cdot 664$
Jet, -	1259	78.7	0.729
Limestone, mean of 7 sorts	2945	$184 \cdot 1$	1.278
Marble, mean of 19 sorts	2720	170.0	1.574
Millstone,	2484	155.3	$1 \cdot 438$
Pavingstone	2416	151.0	$1 \cdot 398$
Peat, hard	1329	$83 \cdot 1$	$0 \cdot 764$
Portland stone -	2570	$160^{\prime} 1$	$1 \cdot 487$
Porphyry, mean of 5 sorts	2723	$170 \cdot 2$	1.575
Pumice stone -	915	$57 \cdot 2$	$0 \cdot 530$
Purbeck stone -	2601	162.6	$1 \cdot 505$
Rag stone	2470	154.4	$1 \cdot 429$
Rotten stone	1981	$123 \cdot 8$	$1 \cdot 146$
Salt,	2130	$183 \cdot 1$	$1 \cdot 233$
Sand,	J520	$95^{\circ} 0$	0.880
Slate, mean of 4 sorts	2620	163.8	$1 \cdot 516$
Stone, common	2520	$157 \cdot 5$	1.458
Sulphur, native	2033	$127 \cdot 1$	$1 \cdot 176$
Sulphux, melted	1991	$124 \cdot 4$	$1 \cdot 152$

TABLIE $121 .-$ WOODE.

Acacia and orange tree Ash and Dantzic oak Beech and English oak Birch, common Birch, American black Box and green heart Cedar, mean of 4 sorts Cherry tree Cork
Deal, Christiana Deal, Memel Ebony, mean of 2 sorts Elm and lnreh
Fir, New England Fir Riga, and maple Fir, Mar Forest Lignum vitae Logwood Mahogany Norway spars Oak, English - Oak, African - Oak, Adriatic Oak, Canadian - Pear tree Pine, pitch and red Poon and hazel Poplar, mean of 2 sorts Teak and plum tree Walnut Willow Yew, mean of 2 sorts

Bpecific
Gravity.

710
760
700
700
750 1000
771
715
240
681
390
1270
540
550 750 700 1333 913 637 580 900 980 990 872 646 660 600 456
750
671
585
798

Wt. of WL of $1 \mathrm{cub} . \mathrm{ft}$.
1bs
$44 \cdot 4$
oz.
0.411
0.420

| $47 \cdot 5$ | $0 \cdot 440$ |
| :--- | :--- | :--- |

| $43 \cdot 8$ | 0.405 |
| :--- | :--- | :--- |

$43.8 \quad 0.405$
46.9
0.434
$62.5 \quad 0.579$

| $48 \cdot 2$ |
| :--- | :--- |
| $44 \cdot 7$ |

0.446
0.414
15.0
0.139
$\begin{array}{ll}42.5 & 0.394 \\ 36.9 & 0.341\end{array}$
7
0.735
$33 \cdot 8$
0.313
0.318
$46 \cdot 9$
0.434
$43.8 \quad 0.405$
$83 \cdot 3$
0.771
$57 \cdot 1 \quad 0.528$
$39 \cdot 8$
0.369

0336
$36 \cdot 3$
0.521
0.567
0.573
0.505
$\begin{array}{lll}40.4 & 0.374 \\ 41 \cdot 3 & 0.382\end{array}$
$37.5 \quad 0.347$
28.50 .264
$46.9 \quad 0.434$
$47.9 \quad 0.386$
36.6 0.339

49.9	0.462

	Specific Gravity	$\begin{gathered} \text { Wh. of } \\ \text { Loub. fl. } \end{gathered}$	$\begin{aligned} & \text { Wt.of } \\ & 1 \text { cab in. } \end{aligned}$
Assafoetida	1328	83.0	$0 \cdot 769$
Bee's wax	967	$60 \cdot 4$	0.560
Bone of an ox	1656	$103 \cdot 5$	0.958
Butter	942	58.9	0.545
Caoutchoug	934	$58 \cdot 4$	0.541
Camphor -	989	61.8	0.572
Copal, mean of 4 sorts	1077	$67 \cdot 3$	$0 \cdot 623$
Fat, do.	930	$58 \cdot 1$	0-538
Gamboge -	1222	$76 \cdot 4$	$0 \cdot 707$
Gum Arabic	1452	$90 \cdot 8$	$0 \cdot 040$
Gum Ammoniac	1207	$75 \cdot 4$	$0 \cdot 699$
Gum lac	1139	$71 \cdot 2$	$0 \cdot 659$
Gunpowder, shaken	932	$58 \cdot 3$	0.539
Do. solid	1745	109'1	1.010
Honey	1450	$90 \cdot 6$	0.839
Indigo	769	$48 \cdot 1$	0.445
Ivory, dry	1825	114.1	1.056
Lard	948	$59 \cdot 3$	$0 \cdot 549$
Madder root	765	$47 \cdot 8$	$0 \cdot 443$
Opium -	1336	$83 \cdot 5$	0.773
Sandarac	1092	$63 \cdot 3$	0.586
Spermaceti	943	58.9	0.547
Sugar, white	1606	$100 \cdot 4$	0.929
Tallow	942	58.9	0.545
Tar-	1015	$63 \cdot 4$	0.587
Wax, shoemakers	897	56.1	0.519
Atmospheric air	1-200	$\cdot 075$	-0007
Azotic Gas	1-182	-074	-0007
Carbonic acid do.	1-824	-114	0011
Muriatie avid do.	1.534	-096	$\cdot 0009$
Nitrous aeid do.	$2 \cdot 912$	-182	-0017
Sulphurous acid do.	$2 \cdot 761$	-173	$\cdot 0016$

TABLE VI.-WATER IN PIPES,

This table shows the quantity and weight of water contained in one fathom of length of pipes of different bores from 1 in . to 12 inches in diameter, advancing by $\frac{1}{2}$ inch. The weight of a cubic foot of water is taken at 1000 ounces avoirdupois, and the imperial gallon at 10 lbs .

Diameter inl ${ }^{\text {anches. }}$.	Quantity in Cuble inches.	Quantity in Imperial gallotis.	Welght in lbs. Avoird.
$\frac{1}{2}$	14-14	0.051	0.51
1	56.55	$0 \cdot 205$	2.05
$1 \frac{1}{2}$	127.23	0.460	$4 \cdot 60$
2	$226 \cdot 19$	0.818	$8 \cdot 18$
$2 \frac{1}{2}$	$353 \cdot 43$	1.278	$12 \cdot 78$
3	$598 \cdot 94$	1.841	18.41
$3 \frac{1}{2}$	$692 \cdot 72$	2-506	$25 \cdot 06$
4	$904 \cdot 78$	$3 \cdot 272$	$32 \cdot 72$
$4 \frac{1}{2}$	$1145 \cdot 11$	$4 \cdot 142$	$41 \cdot 42$
5	$1413 \cdot 72$	5•118	$51 \cdot 13$
$5 \frac{1}{2}$	$1710 \cdot 60$	$6 \cdot 187$	$61 \cdot 87$
6	$2035 \cdot 75$	$7 \cdot 363$	$73 \cdot 63$
$6 \frac{1}{2}$	$2389 \cdot 18$	$8 \cdot 641$	$86 \cdot 41$
7	$2770 \cdot 88$	10.022	$100 \cdot 22$
$7 \frac{1}{2}$	$3180 \cdot 86$	11.505	115.05
8	$3619 \cdot 11$	$13 \cdot 090$	$130 \cdot 90$
$8 \frac{1}{2}$	$4085 \cdot 64$	14.777	$147 \cdot 77$
9	$4580 \cdot 44$	16.567	$165 \cdot 67$
91/	$5103 \cdot 52$	18.459	$184 \cdot 59$
10	$5654 \cdot 87$	$20 \cdot 453$	$204 \cdot 53$
1012	$6234 \cdot 49$	$22 \cdot 550$	225.50
11	6842 39	$24 \cdot 748$	$247 \cdot 48$
$11 \frac{1}{2}$	$7478 \cdot 56$	$27 \cdot 049$	$270 \cdot 49$
12	$8143 \cdot 01$	$29 \cdot 452$	$294 \cdot 53$

III.-STEAM AND STEAM ENGINES.

TABII 1.-PROTERTIES of STEAM.

Column A, contains the total force of steam in atmospheres; Column B, in inches of mercury; and Column C , in lbs, per circular inch. Column D , contains the excess of force above the atmosphere, in lbs. per circular inch; Column E, in lbs, per square inch. Column F, contains the temperature, Fahrenheit; Column G, the volume in cubic feet, the water being 1 ; Column H, the weight of a cubic foot in grains; Column I, the specific gravity, air being 1 ; Column K , the velocity into a vacuum in feet per second; Column L, the heat of conversion from water of 520 , to steam.

A	B	c	D	B	F	9	11	1	K	L
ats	ins	1bs.	1188	$\underbrace{\text { LTM }}_{-14 \times 4}$		caf	${ }^{128}$	${ }^{2} \mathrm{H}$	rel	
+178	${ }_{1}^{\text {eq }}$	2	-113	$-15 * 4$ -1.4	${ }_{7}{ }^{\circ}$	7990 41010	11	-019	1970	${ }^{10090}$
0037	2	3	-10]	-197	9977	12400	2	000	1407	1007
4	3	13	-106	-192	1125	1570	30	007	1445	1007
- 28	4	29	-100	-19.7	${ }_{178.6}^{123}$	${ }_{11139}^{6187}$	9	- 134	1450	1071
\%	$7{ }^{7}$ \%	\% 28	-58	-7.8	178	3290	123	- 35	15	5
75	29	87	-29		1574	22	150	¢ 37	1510	1146
1.00	30	${ }_{1}^{115}$	$0 \cdot 0$	00	gre	1711	200	- 483	1566	
1.5	35	${ }_{1}^{18.5}$	${ }_{5-8}$	${ }_{7}^{24}$	$\frac{8838}{}$	107	8	-6as	${ }^{157}$	${ }^{1168}$
175	52.5	202	${ }_{8}$	11.0	2495	1092	407	- 810	1001	1191
	${ }_{60}$	뤙ㄱㄱㄴ	${ }^{175}$	11.7	250	${ }^{090}$	483	-195	1310	促
${ }_{20}^{2.5}$	${ }_{90}^{75}$	9\%9	${ }^{173}$	${ }_{20}^{20}$	${ }_{87}^{939}$	${ }^{737}$	509	1.123 1.839	183	${ }^{1818}$
35	105	40\%	5	50\%	\%ats	${ }^{\text {cos }}$	810	${ }^{1} 5830$	1649	2as
4	120	46-9	${ }^{316}$	440	2x9.1	475	010	1.728	163	t29
${ }_{6}^{5}$	150 180 180	5	46-2	58\%	348	391	1110	${ }^{\text {g }} 1.129$	157	193
7	210	80\%	689	${ }^{87 \%}$	8515	$\stackrel{3}{3} 8$	1520	${ }_{2}^{2} \cdot 65$	1088	${ }_{1239}^{1959}$
${ }_{9}$	240	993	${ }^{800.8}$	1196	${ }^{3172}$	25	1008	$3 \mathrm{3e5}$	1710	1289
${ }_{10}$	270	1039	50	1177	(1)	299	1910	8641	1780	${ }^{293}$
$2)$	${ }_{600}$	\%		${ }^{1879}$	${ }_{414}^{238}$	111	5010	74	1788	
3	900		8817	495	450	T	5670	10.75	153	398
(4)	1290	461.6	$450-1$	6714	477	80	7850	1889	1850	125

TABLE II.-ELASTLC FORCE OF STEAM.

Note-T, denotes temperature ; and F , force.

											F.		
32	02		082	116	30	157	788	198		299	49	280	
33	021	75	085	117	31	158	890	199	232	240	500	281	
34	1221	76	088	118	32	159	9.92	200	236	241	50.9	288	
35	022	77	e91	119	33	160	0.95	201	$24 \cdot 1$	242	51.8	283	
36	022	78	094	120	33	161	197	202	246	243	526	284	103
	024	79	097	121	3.4	162	299	203	25	244	53.5		${ }^{1056}$
38	025	80	1.0	122	35	163	3102	204	25	245	54	23	10
39	025	81	10	123	36		4104	205	26	246	553	287	
40	926	82	11	124	37	165	5107	206	26	247	563	288	110
41	027	83	$1 \cdot 1$	125	38		6110	207	27.2	248			
42	028	84	$1 \cdot 1$	126	39	167	7113	208	27	249	58	290	11
43	029	85	12	127	40		811.5	209	28	250	59.1	291	116
41	031	86	12	128	$4 \cdot 1$	169	911.8	210	28.8	251	$60 \cdot 1$	292	
45	038	87	12	129	42	170	0121	211	${ }^{29} 4$	252	61.1	29	120
46	033	88		130	43	171	11184	212	$30^{\circ} 0$	258	68	29	122^{2}
47	034	89	13	131	45	172	2127	213	$30 \cdot$	254	63	2	12
48	035	90	14	152	4.6		3130	${ }^{211}$	$31 \times$	255	64		
69	036	91	14	133	47		4133	215	31.8	256	65	29	
50	038	92	$1 \cdot 4$	134	49	175	513.6	216	32.4	257	66		129
51	039	93	1.5	135	$9^{\circ} 0$	176	6139	217	330	258	67	299	131
52	0*40	94		136	$5 \cdot 1$		142	218.	S3		69	300	
53	042	95	16	157	53		814.5	219	342	280	70	301	155
54	$0 \cdot 43$	96	1.6	138	54	179	9148	220	350	261	31	302	
55	0.44	9	${ }_{17}^{17}$	139	$5{ }^{\circ} 6$	180	0152	221	35.5	262	72°	303	
56	046	98	17	140			15			263		304	
57		99	18	141	59		2159	223	57.0	26	74	30	
58	$0 \cdot 49$	100	$1-9$	149	61		3162	224	37.5	265	760	306	146
59	$0 \cdot 51$	101	,	143	$0^{\circ} 2$		17	$2{ }^{2}$	S	263		3	
60	058	102	2.0	144	64	185	5170	296	38.8	267	78	308	150
61	0.5	108	20	145	65		6174	227	,	268	798	309	
62	0.56	104	$2 \cdot 1$	146	67	187	7178	228	40%	269	81°	310	155
63	058	105	22	147	69	158	818.2	299	40%	270	2	311	
61	060	106	23	148	72	159	${ }^{18} 8^{\circ}$	230	41.6	271		${ }_{313}^{312}$	
65	062	107	$2 \cdot 3$	149	72		19.0	231	42\%	272	35	313	
66	064	108	${ }^{2} 4$	150	74		1194	232	43°	278	87.0	,	10,
67	0 06	109	25	151	76	1921	199	238	438	274	885	315	1667
68	068	110	25	152	78		$120 \cdot 3$	234	48	275	30^{4}	316	1698
69	070	111	26	153	8.0		4208	235	455	276	11°	317	
70	078	118	27	154	$8 \cdot 2$		5219	236	164	277	$5 \cdot$	318	74
71		113			84		6217	237	7\%	278	${ }^{-7}$		
		111	28										
			29										

TABLE IIL-SINGLE ACTING STEAM ENGLNES.

Note. The horse power is estimated at 33000 lbs. and the elastic force of the steam at 35 inches. In the first eight columns, the steam acts expansivel y, and in the last two columns, at full pressure.

Column A, is the number of horses power; Col. B, the diameter of the steam piston in inches ; Col. C, the mean pressure on the piston in lbs. @ $5 \frac{1}{2}$ lbs. per circular inch; Col. D, the velocity of the steam piston in feet per minute ; Col. E, length of the stroke in feet ; Col. F, number of strokes per minute ; Col. G, water required per hour to supply the boiler ; Col. H, coals consumed per hour in lbs. Col. I, number of horses' porver ; Col. K, coals consumed per hour in lbs.

A	B	C	D	E	F	G	H	I	K
10	26.4	3850	174	$4 \cdot 4$	19?	$11 \cdot 1$	114	11.2	1.2
15	31.1	5384	187	$5 \cdot 2$	18	$16^{\prime} 7$	164	168	220
20	349	6702	197	$5 \cdot 8$	17	223	218	29.5	985
25	$38^{\prime} 1$	8012	203	63	16	277	257	28	343
30	41^{-1}	9270	214	$6 \cdot 8$	15:	383	307	58.5	410
35	437	10490	221	73	15	39	356	392	475
40	$45^{\prime} 1$	11670	227	77	14	445	401	45	538
45	489	12820	232	8.0	$14 \frac{1}{1}$	50	450	505	600
50	50.4	15950	287	8.4	16	55.5	500	56	670
55	523	15050	249	$8 \cdot 7$	14	61.2	551	62	735
60	54.9	16140	246	90	13.	66^{\prime}	600	67	800
65	560	17210	250	$9 \cdot 3$	19	78.1	649	73	86
70	576	18260	254	$9 \cdot 6$	13.	78	708	78	940
75	392	19290	257	98	13	88.3	750	84	1000
80	608	20310	260	101	13	89	801	89	1070
85	¢ 63	21330	26.	$10 \cdot 4$	12	945	831	95	1140
90	637	22320	267	10'6	12	100	900	101	1200
100	$65^{\circ} 5$	24290	279	$11^{\circ} 0$	12.	111	993	115	1530
120	715	28100	283	119	12	133	1197	154	1600
140	760	31790	291	126	113	156	1404	157	1860
160	802	\$5380	299	133	11.	178	1602	179	2140
180	84^{\prime} I	88870	507	14.0	11	800	1800	201	2400
200	87\%	42300	313	146	10:	222	1998	224	2650
213 b	n0	44550	318	150	101	237	2133	265	¢860

TABLE IV.-DOUBLE ACTING STEAM ENGINES.
Note. - The horse power and elastic force are the same as in Table III.

The Columns in this table are headed the same as in Table III, with the exception of Col. C, where the mean pressure is 4.8 lbs . per circular inch.

A	8	C	1	E	F	G	H	1	K
	$7 \cdot 8$	289	114	17	44	0.8	15	146	31.5
2	1025	516	131	175	$37 \frac{1}{3}$	157	23	295	48
3	1205	697	141	20	85	$2 \cdot 56$	301	44	64
4	13.52	877	149	225	33	373	38	59	80
5	149	1049	157	25	31	3128	45	$7 \cdot 4$	94
6	159	1214	162	265	30 -	47	53	885	111
7	169	1373	167	28	29	55	60	103	125
8	1785	1527	171	297	29	63	67	118	140
9	187	1678	175	31	$26 \frac{1}{4}$	$7 \cdot 05$	73	183	153
10	195	1826	180	325	$26{ }^{-1}$	788	80	14.6	168
12	209	2113	186	$3 \cdot 5$	26	94	95	177	199
14	$22 \cdot 3$	2990	191	37	$25:$	11.0	109	207	239
16	236	2659	196	39	25	126	122	28.6	255
18	247	2922	241	41	244	14'1	135	26.5	283
20	2575	3179	206	43	24	157	149	29.5	312
22	2675	3431	211	45	23	175	163	92.5	541
24	27.7	3678	213	4.6	931	$18 \cdot 1$	176	855	370
26	986	5928	216	475	23.	$20 \cdot 4$	189	38.4	395
23	99-45	4161	220	49	$22 \pm$	48.0	203	413	425
30	$30 \cdot 27$	4997	222	504	22	285	216	$44 \cdot 2$	451
32	31.1	4630	226	52	2!	$25 \cdot 1$	230	47.3	480
34	31.93	4560	229	53	211	267	213	50	510
36	32.56	5089	298	543	$21 / 4$	2873	256	53	535
38	33.3	5313	294	$5 \cdot 5$	21	297	269	56	561
40	34	5535	237	567	21	$31 \cdot 4$	283	59	596
49	3868	5756	289	577	203	830	997	68	624
44	$35 \cdot 13$	5919	241	585	$20 \frac{1}{1}$	34.5	911	65	659
46	359	6190	244	60	20)	968	924	07.5	680
48	365	6404	246	6'1	20.	377	338	705	709
50	37'13	6617	248	69	20	393	353	735	789
59	377	6828	250	63	20	407	967	$76-4$	768
54	383	7036	259	$6 \cdot 4$	19. ${ }^{\text {a }}$	424	381	$79 \cdot 3$	798
56	38.85	7245	254	649	191	44.4	396	$82 \cdot 9$	882
58	39.4	7453	255	6.57	$19 \frac{1}{}$	454	409	$85 \cdot 1$	850
60	399	7656	257	665	$19 \frac{2}{3}$	470	493	$88 \cdot 1$	887
681	405	7860	250	675	19\%	18\%	437	$91^{\circ} 0$	916

A	13	c	D	E	F	G	H	I	K
63	$41^{\circ} 0$	8063	260	688	19	502	452	939	916
60	41.5	8263	261	69	19	51.8	466	9048	975
68	420	8462	263	\%'0	18:	5354	481	$99^{7} 7$	1005
70	425	8669	265	$7 \cdot 1$	18.	$55^{\circ} 0$	495	1027	1035
72	$48^{\circ} 0$	8858	266	717	$18 \frac{1}{4}$	569	509	105×6	1064
74	43'4	9045	268	723	181	$58^{\prime} 1$	514	1085	1094
76	439	9250	269	73	181	508	538	1114	1123
78	44.4	944	270	74	18.	$61^{\circ} 5$	554	$114 * 3$	1153
80	448	8637	278	747	181	$62 \cdot 5$	563	1178	1189
80	459	10120	275	765	18	665	599	1246	1254
98	4627	10590	279	783	177	70.5	635	131.9	1330
95	480	11061	283	80	17.	744	670	1394	1404
100	49%	11520	284	$8 \cdot 16$	178	$78{ }^{\circ}$	704	146%	1478
105	4995	11980	287	832	174	$82 \cdot 1$	789	1.53:3	1552
110	509	12130	290	$8{ }^{8} 5$	17	860	774	$161^{\prime \prime}$	1626
115	$51 *$	12760	292	S'6	17	899	809	1679	1700
120	32-7	13830	294	88	$16 \frac{1}{4}$	98.8	844	$175{ }^{\circ} 2$	1774
125	537	13760	297	89	16	977	879	1825	1S18
137	$54 \cdot 1$	14210	299	$9 \cdot 0$	16	1017	915	1898	1921
135	55 ± 3	14740	300	92	164	105%	950	197%	1995
140	56^{-1}	15080	302	935	164	1095	986	2014	2069
145	$56: 84$	155:0	306	$9 \cdot 47$	16 ¢	113:4	1091	2117	2113
150	576	15930	308	96	16	1178	1055	2190	$\underline{2917}$
150	28:	16800	310	97	16	$121{ }^{\circ}$	1091	2968	2991
160	591	16780	312	988	15 ${ }^{3}$	125"2	1187	2836	2339
175	613	18030	318	109	15 者	129'1	1162	2409	2138
180	68.4	18440	320	108	15	189%	1197	218.4	9512
200	677	22000	334	113	$14 \frac{1}{4}$	1564	1408	$22_{2} 0$	2956

TAMLE V .- HIGI PRESSURE ENGINES.
${ }^{r}$ Col. A, temperature of the steam ; B, olastic force in inches ; C , force in lbs. per square inch above the atmosphere; D , lbs. of coai equivalent to 1 horse power, steam at full pressure; \mathbf{F}, do, seting expansively; \mathbf{F}, $\mathbf{l b s}$, raised 1 foot high, equivalent to the power of sttam from 84 lbs , of coal, at full pressure; G, do. expansively.

A	13	c	D	E	F	G
2345	45	74	480		8780000	
251	60	14.8	163	143	8201000	9800000
275	90	29.7	98	77	13700000	17700000
2928	120	445	88	59	16600000	22700000
3077	150	593	71	51	18000000	26200000
3202	180	74%	70	48	19.00000	287036000
3436	240	104	65	413	25000000	32200000

In the preceding tables of specific cohesion from Tredgold, the coliesion of plate glass is assumed us unity. If any of the numbers in these tables be multiplied by 9240 , the product will express the force in lbs. which would tear asunder a bar of the corresponding material of one inch square of transverse section. Thus, the specific cohesion of steel, razor temper, is 15.927 , whence the extreme cohesion of a bar one inch square, is $15.927 \times 9240=$ 147165.48 lbs .

TABLE IV.-DIRECT COHESION OF METALS.

The numbers in this table of Rennie's experiments express the direct cohesion of bars 1 inch square in tons.

TABLE V.-RESISTANCE OF $)$ ETALS TO TORSION.
This table of experiments' by Rennie exhibits only the relative resistance to torsion, that of lead being assumed as unity.

Sheer steel	-	-	-	-	-	17.06
Blister steel	-	-	-	-	-	16.69
English iron	-	-	-	-	-	10.13
Swedish iron	-	-	-	-	-	$9 \cdot 50$
Hard gun metal	-	-	-	-	$5 \cdot 00$	
Fine yellow brass	-	-	-	-	4.69	
Copper	-	-	-	-	-	4.31
Tin	-	-	-	-	-	-
Lead	-	-	-	-	-	-
1.44						

table vi.-RESISTANCE of METALS TO PRESSUREE.
In this table of experiments by Rennie, thei number of lbs. are the weights required to crushi cubes of $\frac{1}{4}$ inch in the edge.

Iron cast vertically	-	-	-	-	11136
do. do. horizontally	-	-	-	10114	
Copper do.	-	-	-	-	-
7318					
do. wrought	-	-	-	-	-
Brass	-	-	-	-	-
Tin cast	-	-	-	-	-

TABLE VII. \rightarrow RESISTANCE OF WOODS TO PRESSURE.
In this table the experiments were made with cubes of 1 inch in the edge.

Elin	-	-	-	-	-	1264
American pine	-	-	-	-	1606	
White deal	-	-	-	-	-	1928
English oak	-	-	-	.	.	3860

TABLE VIII.-RESISTAMCE OF STONES TO PRESSURE.
The following experiments were made with cubes of $1 \frac{1}{2}$ inch in the edge, except the first two, which were made with cubes one inch in the edge.

Statuary marble	-	-	-	3216
Craigleith stone	-	-	-	8688
Chalk - -	-	-	-	1127
Brick pale red -	-	-	-	1265
Roe stone Gloucestershire	-	-	-	1449
Red Brick do. - -	-	-	-	1817
Do. Hammersmith pavier's		-	-	2254
Burnt do. -	-	=	-	3243
Fure Brick	-	-	-	3864
Derby grit	-	-	-	7070
Do.	-	-	-	9776
Killaly white freestone	-	-	-	10264
Portland do. - -	-	-	-	10284
Craigleith do. -	-	-	-	12346
"orkshire paving -	-	-	-	12856
White statuary marble	-	-	-	13632
Cornish granite -	-	-	-	14302
Dundee sandstone	-	-	-	14918
Devonshire red marble	-	-	-	16712
Compact limestone	-	-	-	17354
Peterhead granite -	-	=	-	18636
Black compact limestone	-	-	-	19924
Purbeck - -	-	-	-	20610
13lack Brabant marble	-	-	-	20742
Treestone very hard -	-	-	-	21254
White Italian marble	-	-	-	21783
Granite Aberdeen blue	-	-	-	24556

TABLE

 1x.-MODULUS OF ELASTICITY AND COHESION OF MATERIALS.In this table taken mostly from Sir John Leslie's work on Natural Philosophy, column A denotes the modulus of elasticity in feet ; col. B, the fraction of it which constitutes the limit of extreme longitudinal cohesion; col. C, the absolute cohesion or load in lbs, tbat would rend a prism of an inch square ; and col. D, the altitude in feet of the prism that would be torn asunder by the action of its own weight.

| Materials. | A | B | C | D |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Teak - | 6040000 | $168 t h$ | 12915 | 36049 |
| Oak | 4150000 | 144 | 11880 | 32900 |
| Syeamore | 3860000 | 108 | 9630 | 35800 |
| Beech - | 4180000 | 107 | 12225 | 38940 |
| Ash | 4617000 | 109 | 14180 | 42080 |
| Elm - | 5680000 | 146 | 9720 | 39050 |
| Memel fir | 8292000 | 205 | 9540 | 40500 |
| Christiana deal | 8118000 | 146 | 12346 | 55500 |
| Larch - | 5096000 | 121 | 12240 | 42160 |
| White marble | 2150000 | 1394 | 1811 | 1542 |
| Purtland stone | 1570000 | 1789 | 857 | 945 |
| Hempen fibres | 5000000 | 266 | 6400 | 18790 |
| Malleable Iron | 7550000 | 446 | 55872 | 16938 |
| Cast Irou | 5895000 | 965 | 19096 | 6110 |

TABLE X.-ADHESION OF NAILS.

In this table of experiments by Mr. Bevan, col, A contains the number of nails to the lb. ; col. B, the length in inches; col. C, the depth forced into the wrood in inches ; and col. D , the force required to extract them in lbs.

Nails.		A	B	c	D
Fine sprigs		4560	0.44	0.40	22
do. do.		3200	$0 \cdot 53$	$0 \cdot 44$	37
Threepenny Brads		618	$1-25$	$0 \cdot 50$	58
Cast iron nails		380	$1 \cdot 00$	0.50	72
Sixpenny nails		73	2.50	100	187
do. do.		-	-	1-50	327
do. do.		-	-	$2 \cdot 00$	530
Fivepenny nails	-	139	$2 \cdot 00$	1-50	320

The preceding table exhibits the relative adhesion of nails of various kinds, when forced into dry Christiana deal, at right angles to the grain of the wood.

The percussive force required to drive the common sixpenny nail to the depth of one inch and half into dry Christiana deal, with a cast iron weight of $6 \cdot 275$ lbs. was four blows or strokes falling freely the space of 12 inches; and the steady pressure to produce the same effect was 400 lbs .

A sixpenny nail driven into $d r y \mathrm{elm}$, to the depth of one inch across the grain, required a pressure of 327 lbs, to extract it ; and the same nail, driven endways, or longitudinally iuto the same wood, was extracted with a force of 257 pounds.

The same nail driven two iuches endways into dry Christiana deal, was drawn by a force of 257 pounds ; and to draw out one inch under like circumstances, took 87 pounds only. The relative adhesion, therefore, in the same wood, when driven trausversely or longitudinally, is 100 to 78 , or about 4 to 3 in dry elm; and 100 to 46 , or about 2 to 1 in deal; and in like circumstances, the relative adhesion to elm and deal is as 2 or 3 to 1 .

The progressive depths of a sixpenny nail driven Into dry Christiana deal hy simple pressure, were as follows:

One quarter of an inch, a pressure of 24 Ibs .
Half an inch
One inch
One inch and half - - - 400 -
Two inches - . - . 610 —
To extract a common sixpenny nail from a depth of one inch out of
Dry Oak, required
Dry Beech
Green Sycamore -
-
-

From these experiments, we may infer that a common sixpenny nail, driven two inches into dry oak, would require a force of more than half a ton to extract it hy a steady force. A common screw, of one-fifth of an inch, was found to have an adhesive force of about three times that of a sixpenny nail. The force necessary to break or tear out a half inch iron pin, applied in the manner of a pin to a tenon in the mortice, the thickness of the board being 0.87 inch, and the distance of the centre of the hole from the end of the hoard 1.05 inch, was 976 pounds.

As the strength of a tenon from the pin hole may be considered in proportion to the distance from the end, and also as the thickness, we may, for this species of wood, ohtain the hreaking force in pounds nearly, by multiplying together one thousand times the distance of the hole from the end by the thickuess of the tenon in inches.
200
$x=1$
0
X MaN:
MNRX

 whet thenes)

 MESo

 wow SNaw wo

 Whata X)

 $\left(\frac{1}{2}\right.$ rares

[^0]: "This work forms one of the most complete Guides to Phrenology which we have seen, within a moderate compass. In its arrangement it is clear and lucid, displaying great logical tact, and mental attainments of no mean order. The anatomical knowledge of the author has been eminently usenal in illustrating various branches of the subject, and gives weight to his arguments on many points which are beyond the reach of writers who have not practically studied the structure of the human brain."-Gilasgow Argus.
 "It"]s simply and perspicuonsly written, and, with the plates, gives a very clear and comprehensive view of the subject." Fifo Journal.
 "The author of the work before us deserves very great praise. He bas simplified Phrenology very materially, and his ohservations being written in a clear and lucid style, they will be easily understond and digented. It is alao a very excellent feature in this book, that the writer founds uniformly xpon evididence, and never thinks of convincing his readers by bare assertions,"-Aberdeen Hcrald.

[^1]: * Notes to Buchanan on Mill Work, vol. i. p. 167.

[^2]: * Natural Philosophy, p. 283.

[^3]: * See Gregory's Mechanics, vol it. p. 441.

[^4]: * When an underihot wheel is employed, the effective power is reckoned only $\frac{3}{6}$ of this, in practice: see art. 42.

[^5]: * A detailed account of the Imperial Weights \& Measures, with Tables of Comparison and Conversion between the Old and New Standards, may be had of the Publisher, price 4 d .

[^6]: * The dlameter of any small sphere or globule of a given material may he found by dividing its weight in grains by the number expressing its specific gravity, extracting the cube roof of the quotient, and multiplying this root by 19612.

[^7]: * Leslic's Natural Philvsophy, p. 271.

